Volume 19, Issue 1 (January 2021)                   IJRM 2021, 19(1): 23-34 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Najafipour R, Momeni A, Yousefipour F, Mousavi S, Moghbelinejad S. Underexpression of hsa-miR-449 family and their promoter hypermethylation in infertile men: A case-control study. IJRM. 2021; 19 (1) :23-34
URL: http://journals.ssu.ac.ir/ijrmnew/article-1-1628-en.html
1- Research Institute for Prevention of Non-Communicable Diseases, Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, Iran.
2- Biology Department, School of Basic Science, Arak University, Arak, Iran.
3- National Institute of Engineering and Biotechnology, Tehran, Iran.
4- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
5- Research Institute for Prevention of Non-Communicable Diseases, Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, Iran. , smoghbelinejad@qums.ac.ir
Abstract:   (306 Views)
Background: Post-transcriptional microRNAs (miRNAs) have a impotrant pattern in the spermatogenesis process.
Objective: Study of the expression and methylation of hsa-miR-449 family in sperm samples of infertile men.
Materials and Methods: In this case-control study, we recruited 74 infertile men (with asthenozoospermia, teratozoospermia, asthenoteratozoospermia, and oligoasthenoteratozoospermia) and 30 control samles. Methylation-specific PCR (MSP) method was used for methylation evaluation of hsa-miR-449 a, b, c promoter. By Real time PCR (qRT-PCR) method,we showed downregulation of hsa-miR-449 a, b, c in the sperm samples of infertile men and compared it to their fertile counterparts.
Results: There was significant underexperssion, in hsa-miR-449-b in oligoasthenoteratospermic samples (p = 0.0001, F = 2.9). About the methylation pattern, infertile men showed high frequency of methylation in the promoter of hsa-miR-449 a, b, c in comparison to controls (60.8% vs 23.3%), the highest amount of methylation was observed in oligoasthenoteratospermia samples (81.2%).
Conclusion: In this study, low expression and high methylation of hsa-miR-449-b were observed in infertile men in compared to control samples, which can be one of the causes of defective spermatogenesis.
Full-Text [PDF 16835 kb]   (138 Downloads) |   |   Full-Text (HTML)  (54 Views)  
Type of Study: Original Article | Subject: Reproductive Genetics

References
1. Krausz C, Riera-Escamilla A. Genetics of male infertility. Nature Reviews Urology 2018; 15: 369-384. [DOI:10.1038/s41585-018-0003-3]
2. Freitas e Silva KS. Molecular genetics of male infertility: A mini-review. Trends in Res 2018; 1: 1-3. [DOI:10.15761/TR.1000112]
3. Kim SY, Kim HJ, Lee BY, Park SY, Lee HS, Seo JT. Y Chromosome microdeletions in infertile men with non-obstructive azoospermia and severe oligozoospermia. J Reprod Infert 2017; 18: 307-315.
4. O'Brien J, Hayder H, Zayed Y, Peng Ch. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in Endocrinology 2018; 9: 402-413. [DOI:10.3389/fendo.2018.00402]
5. Plotnikova O, Baranova A, Skoblov M. Comprehensive analysis of human microRNA-mRNA interactome. Frontiers in Genetics 2019; 10: 933-401. [DOI:10.3389/fgene.2019.00933]
6. Si W, Shen J, Zheng H, Fan W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clinical Epigenetics 2019; 11: 25-48. [DOI:10.1186/s13148-018-0587-8]
7. Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nature Reviews Molecular Cell Biology 2019; 20: 21-37. [DOI:10.1038/s41580-018-0045-7]
8. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RHA, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 2005; 120: 21-24. [DOI:10.1016/j.cell.2004.12.031]
9. Pasquinelli AE, Hunter Sh, Bracht J. MicroRNAs: a developing story. Curr Opin Genet Dev 2005; 15: 200-205. [DOI:10.1016/j.gde.2005.01.002]
10. Kotaja N. Micro RNA and spermatogenesis. Fertility and Sterility 2014; 101: 1552-1562. [DOI:10.1016/j.fertnstert.2014.04.025]
11. Harton GL, Tempest HG. Chromosomal disorders and male infertility. Asian J Androl 2012; 14: 32-39. [DOI:10.1038/aja.2011.66]
12. Urdinguio RG, Bayon GF, Dmitrijeva M, Torano EG, Bravo C, Fraga MF, et al. Aberrant DNA methylation patterns of spermatozoa in men with nexplained infertility. Hum Reprod 2015; 30: 1014-1028. [DOI:10.1093/humrep/dev053]
13. Tuttelmann F, Simoni M, Kliesch S, Ledig S, Dworniczak B, Wieacker P, et al. Copy number variants in patients with severe oligozoospermia and Sertoli-cell-only syndrome. PLoS One 2011; 6: e19426. [DOI:10.1371/journal.pone.0019426]
14. Gunes S, Asci R, Okten G, Atac F, Onar OE, Ogur G, et al. Two males with SRY-positive 46, XX testicular disorder of sex development. Syst Biol Reprod Med 2013; 59: 42-47. [DOI:10.3109/19396368.2012.731624]
15. Pomper N, Liu Y, Hoye ML, Dougherty JD. CNS MicroRNA profiles: a database for cell type enriched microRNA expression across the mouse central nervous system. Sci Rep 2020; 20: 4914-4921. [DOI:10.1038/s41598-020-61307-5]
16. Zhang Zh, Zhuang L, Lin ChH. Roles of microRNAs in establishing and modulating stem cell potential. Int J Mol Sci 2019; 20: 3643-3673. [DOI:10.3390/ijms20153643]
17. Xie K, Liu J, Chen J, Dong J, Ma H, Liu Y, et al. Methylation-associated silencing of microRNA-34b in hepatocellular carcinoma cancer. Gene 2014; 543: 101-107. [DOI:10.1016/j.gene.2014.03.059]
18. Yang X, Feng M, Jiang X, Wu Zh, Li Zh, Aau M, et al. miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev 2009; 23: 2388-2393. [DOI:10.1101/gad.1819009]
19. Czech B, Hannon GJ. Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 2011; 12: 19-31. [DOI:10.1038/nrg2916]
20. Boeva V. Analysis of genomic sequence motifs for deciphering transcription factor binding and transcriptional regulation in eukaryotic cells. Front Genet 2016; 7: 1-16. [DOI:10.3389/fgene.2016.00024]
21. Bao J, Li D, Wang L, Wu J, Hu Y, Wang Zh, et al. MicroRNA-449 and microRNA-34b/c function redundantly in murine testes by targeting E2F transcription factor-retinoblastoma protein (E2F-pRb) pathway. J Biol Chem 2012; 287: 21686-21698. [DOI:10.1074/jbc.M111.328054]
22. Wu Q, Song R, Ortogero N, Zheng H, Evanoff R, Small CL, et al. The RNase III enzyme DROSHA is essential for MicroRNA production and spermatogenesis. J Biol Chem 2012; 287: 25173-25190. [DOI:10.1074/jbc.M112.362053]
23. Li Q, LI H, Zhao X, Wang B, Zhang L, Zhang C, et al. DNA methylation mediated downregulation of miR-449c controls osteosarcoma cell cycle progression by directly targeting oncogene c-Myc. Int J Biol Sci 2017; 13: 1038-1050. [DOI:10.7150/ijbs.19476]
24. Zhang Q, Yang Zh, Shan J, Liu L, Liu Ch, Shen J, et al. MicroRNA-449a maintains self-renewal in liver cancer stem-like cells by targeting Tcf3. Oncotarget 2017; 8: 110187-110200. [DOI:10.18632/oncotarget.22705]
25. Wu J, Bao J, Kim M, Yuan Sh, Tang Ch, Zheng H, et al. Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis. Proc Natl Acad Sci USA 2014; 111: E2851-E2857. [DOI:10.1073/pnas.1407777111]
26. World Health Organization Do RHaR. WHO Laboratory Manual for the Examination and Processing of Human Semen. Geneva: WHO Press; 2013.
27. Momeni AM, Najafiour R, Hamta A, Jahani S, Moghbelinejad S. Experssion and methylation pattern of has_miR_34 family in sperm samples of infertile men. Reprod Sci 2020; 27: 301-308. [DOI:10.1007/s43032-019-00025-4]
28. Liu WM, Pang RT, Chiu PC, Wong BP, Lao K, Lee KF, et al. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci 2012; 109: 490-494. [DOI:10.1073/pnas.1110368109]
29. Comazzetto S, Di Giacomo M, Rasmussen KD, Much Ch, Azzi Ch, Perlas E, et al. Oligoasthenoteratozoospermia and infertility in mice deficient for miR-34b/c and miR-449 loci. PLoS Genet 2014; 10: e1004597: 1-11. [DOI:10.1371/journal.pgen.1004597]
30. Nissan T, Parker R. Computational analysis of miRNA-mediated repression of translation: Implications for models of translation initiation inhibition. RNA 2008; 14: 1480-1491. [DOI:10.1261/rna.1072808]
31. Noonan EJ, Place RF, Pookot D, Basak S, Whitson JM, Hirata H, et al. miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 2009; 28: 1714-1724. [DOI:10.1038/onc.2009.19]
32. Buurman R, Gurlevik E, Schaffer V, Eilers M, Sandbothe M, Kreipe H, et al. Histone deacetylases activate hepatocyte growth factor signaling by repressing microRNA-449 in hepatocellular carcinoma cells. Gastroenterology 2012; 143: 811-820. [DOI:10.1053/j.gastro.2012.05.033]
33. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012; 13: 484-492. [DOI:10.1038/nrg3230]
34. Marczylo EL, Amoako AA, Konje JC, Gant TW, Marczylo TH. Smoking induces differential miRNA expression in human spermatozoa: A potential transgenerational epigenetic concern? Epigenetics 2012; 7: 432-439. [DOI:10.4161/epi.19794]
35. Dickson DA, Paulus JK, Mensah V, Lem J, Saavedra-Rodriguez L, Gentry A, et al. Reduced levels of miRNAs 449 and 34 in sperm of mice and men exposed to early life stress. Translational Psychiatry 2018; 8: 101-110. [DOI:10.1038/s41398-018-0146-2]

Send email to the article author


© 2021 CC BY-NC 4.0 | International Journal of Reproductive BioMedicine

Designed & Developed by : Yektaweb