Volume 7, Issue 4 (7-2009)                   IJRM 2009, 7(4): 181-188 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Almasi-Turk S, Roozbehi A, Aliabadi E, Haeri A, Sadeghi Y, Hosseini A. Developmental consequences of mouse cryotop-vitrified oocyte and embryo using low concentrated cryoprotectants. IJRM. 2009; 7 (4) :181-188
URL: http://journals.ssu.ac.ir/ijrmnew/article-1-156-en.html
1- Molecular and Cell Biology Research Center, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
2- Department of Anatomical Sciences, Yasuj University of Medical Sciences, Yasuj, Iran
3- Department of Anatomical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
4- Department of Pharmacology, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
5- Molecular and Cell Biology Research Center, Shaheed Beheshti University of Medical Sciences, Tehran, Iran , prof_hosseini@yahoo.com
Abstract:   (1148 Views)
Background: The risk of multiple pregnancies often present in programs of In Vitro Fertilization (IVF) is an important force for embryo cryopreservation. On the other hand ethical restriction and assurance of potential fertility following chemo/radio therapy has led scientists to focus on female gamete preservation.
Objective: Optimizing vitrification protocol by using less concentrated cryoprotectants (CPAs) in order to decrease CPAs toxicity.
Materials and Methods: Mouse Metaphase-II (M-II) oocytes and four cell-stage embryos were collected. Oocytes Survival Fertilization and Developmental Rates (SRs FRs DRs) were recorded after cryotop-vitrification/warming. As well as comparing fresh oocytes and embryos the data obtained from experimental groups (exp.) applying 1.25 1.0 0.75 molar (M) CPAs were analyzed in comparison to those of adopting 1.5 M CPAs [largely-used concentration of Ethylen Glycol (EG) and Dimethyl-sulphoxide (DMSO)].
Results: The data of oocytes exposed to 1.25 M concentrated CPAs were in consistency with those exposed to 1.5 M and control group in terms of SR FR and DR. As less concentration was applied the more decreased SRs FRs and DRs were obtained from other experimental groups. The results of embryos which were exposed to 1.25 M and 1.0 M were close to those vitrified with 1.5 M and fresh embryos. The results of 0.75 M concentrated CPAs solutions were significantly lower than those of control 1.5 M and 1.0 M treated groups.
Conclusion: CPAs limited reduction to 1.25 M and 1.0 M instead of using 1.5 M for oocyte and embryo cryotop-vitrification procedure may be a slight adjustment.
Full-Text [PDF 132 kb]   (210 Downloads) |   |   Full-Text (HTML)  (82 Views)  
Type of Study: Original Article |

1. Dhali A, Anchamparuthy VM, Butler SP, Pearson RE, Mullarky IK, Gwazdauskas FC. Effect of droplet vitrification on development competence, actin cytoskeletal integrity and gene expression in in-vitro cultured mouse embryos. Theriogenology 2009; 71: 1408-1416. [DOI:10.1016/j.theriogenology.2009.01.011]
2. Moore K, Bonilla AQ. Cryopreservation of mammalian embryo: The state of the art. Annu Rev Biomed Sci 2006; 8: 19-32. [DOI:10.5016/1806-8774.2006v8p19]
3. Stachecki JJ, Cohen J. An overview of oocyte cryopreservation. Reprod Biomed Online 2004; 9: 152-163. [DOI:10.1016/S1472-6483(10)62124-4]
4. Tucker M, Morton P, Liebermann J. Human oocyte cryopreservation: a valid alternative to embryo cryopreservation? Obstet Gynecol 2004; 113S: S24-S27. [DOI:10.1016/j.ejogrb.2003.11.006]
5. Kim ChG, Yong H, Lee G, Cho J. Effect of the Polyvinylpyrrolidone Concentration of Cryoprotectant on Mouse Embryo Development and Production of Pups: 7.5% of PVP is Beneficial for In Vitro and In Vivo Development of Frozen-Thawed Mouse Embryos. J Reprod Dev 2008; 54: 250-253. [DOI:10.1262/jrd.19185]
6. Sheehan CB, Lane M, Gardner DK. The cryoloop facilitates re-vitrification of embryos at four successive stages of development without impairing embryo growth. Hum Reprod 2006; 1: 1-7. [DOI:10.1093/humrep/del253]
7. Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: The Cryotop method. Theriogenology 2007; 67: 73-80. [DOI:10.1016/j.theriogenology.2006.09.014]
8. Hredzak R, Ostro A, Maracek I, Kacmarik J, Zdilova V, Vesela J. Influence of Slow-rate Freezing and Vitrification on Mouse Embryos. Acta vet Brno 2005; 74: 23-27. [DOI:10.2754/avb200574010023]
9. Morato R, Izquierdo D, Paramio MT, Mogas T. Cryotops versus open-pulled straws (OPS) as carriers for the cryopreservation of bovine oocytes: Effects on spindle and chromosome configuration and embryo development. Cryobiology 2008; 57: 137-141. [DOI:10.1016/j.cryobiol.2008.07.003]
10. Manjunatha BM, Gupta PSP, Ravindra JP, Devaraj M, Nandi S. Effect of vitrification medium composition and exposure time on post-thaw development of buffalo embryos produced in vitro. The veterinary journal 2009; 179: 287-291. [DOI:10.1016/j.tvjl.2007.08.031]
11. Yavin S, Aroyo A, Roth Z, Arav A. Embryo cryopreservation in the presence of low concentration of vitrification solution with sealed pulled straws in liquid nitrogen slush. Hum Reprod 2009; 1: 1-8.
12. Campos-Chillon LF, Suh TK, Barcelo-Fimbres M, Seidel GE, Carnevale EM. Vitrification of early-stage bovine and equine embryos. Theriogenology 2009; 71: 349-354. [DOI:10.1016/j.theriogenology.2008.08.001]
13. Lowther KM, Weitzman VN, Maier D, Mehlmann LM. Maturation, fertilization, and the structure and function of the endoplasmic reticulum in cryopreserved mouse oocytes. Biol Reprod 2009; 81: 147-154. [DOI:10.1095/biolreprod.108.072538]
14. Makarevich AV, Chrenek P, Olexikova L, Popelkova M, Turanova Z, Ostro A, et al. Post-thaw survival, cell death and actin cytoskeleton in gene-microinjected rabbit embryos after vitrification. Theriogenology 2008; 70: 675-681. [DOI:10.1016/j.theriogenology.2008.04.043]
15. Tucker MJ, Liebermann J. Vitrification in assisted reproduction: A user's manual and troubleshooting guide. First edition. United kingdom: Informa healthcare; 2007.
16. Eroglu A, Lawitts JA, Toner M, Toth TL. Quantitative microinjection of trehalose into mouse oocytes and zygotes, and its effect on development. Cryobiology 2003; 46: 121-134. [DOI:10.1016/S0011-2240(03)00018-X]
17. Eroglu A, Bailey SE, Toner M, Toth TL. Successful cryopreservation of mouse oocytes by using low concentrations of trehalose and dimethylsulfoxide. Biol Reprod 2009; 80: 70-78. [DOI:10.1095/biolreprod.108.070383]
18. Kyono K, Nakajo Y, Kumagai S, Nishinaka C. Vitrifying and warming of oocytes using cryotop. In: Tucker MJ, Liebermann J. Vitrification in assisted reproduction: A user's manual and troubleshooting guide. United Kingdom: Informa healthcare; 2007: 153-161. [DOI:10.3109/9780203090022.012]
19. Soleimani R, Van der Elst J, Heytens E, Van den Broecke R, Gerris J, Dhont M, et al. Back muscle as a promising site for ovarian tissue transplantation, an animal model. Hum Reprod 2008; 23: 619-626. [DOI:10.1093/humrep/dem405]
20. Chen SU, Lien YR, Cheng YY, Chen HF, Ho HN, Yang YS. Vitrification of mouse oocyte using closed pulled straws (CPS) achieves a high survival and preserves good patterns of meiotic spindles, compared with conventional straws, open pulled straws (OPS) and grids. Hum Reprod 2001; 16: 2350-2356. [DOI:10.1093/humrep/16.11.2350]
21. Balaban B, Urman B, Alatas C, Mercan R, Mumcu A, Isiklar A. A comparison of four different techniques of assisted hatching. Hum Reprod 2002; 17: 1239-1243. [DOI:10.1093/humrep/17.5.1239]
22. Pegg DE. Principles of Cryopreservation. In: Day JG, Stacey GN. Methods in molecular biology: Cryopreservation and freeze-drying protocols. USA: Humana press Inc., 2006; 39-57. [DOI:10.1007/978-1-59745-362-2_3]
23. Endoh K, Mochida K, Ogonuki N, Ohkawa M, Shinmen A, Ito M, et al. The developmental ability of vitrified oocytes from different mouse strains assessed by parthenogenetic activation and intaracytoplasmic sperm injection. J Reprod Develop 2007; 53: 1119-1206. [DOI:10.1262/jrd.19058]
24. Kartberg AJ, Hambiliki F, Arvidsson T, Stravreus-Evers A, Svalander P. Vitrification with DMSO protects embryo membrane integrity better than solutions without DMSO. Reprod Biomed Online 2008; 17: 378-384. [DOI:10.1016/S1472-6483(10)60221-0]
25. Cobo A, Kuwayama M, Perez S, Ruiz A, Pellicer A, Remohi J. Comparison of concomitant outcome achieved with fresh and cryopreserved donor oocytes vitrified by the cryotop method. Fertil Stril 2008; 89: 1657-1664. [DOI:10.1016/j.fertnstert.2007.05.050]
26. Kuwayama M, Vajta G, Kato O, Leibo SP. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online 2005; 11: 300-308. [DOI:10.1016/S1472-6483(10)60837-1]
27. Katayama KP, Stehlik J, Kuwayama M, Kato O, Stehlik E. High survival rate of vitrified human oocytes results in clinical pregnancy. Fertil Steril 2003; 80: 223-224. [DOI:10.1016/S0015-0282(03)00551-X]
28. Nagai S, Mabuchi T, Hirata S, Shoda T, Kasai T, Yokota S, et al. Correlation of abnormal mitochondria distribution in mouse oocytes with reduced developmental competence. Tohoku J Exp Med 2006; 210: 137-144. [DOI:10.1620/tjem.210.137]
29. Katkov II, Isachenko V, Isachenko E. Vitrifying in small quenched volumes with a minimal amount of, or without vitrificants: basic biophysics and thermodynamics. In: Tucker MJ, Liebermann J. Vitrification in assisted reproduction: A user's manual and troubleshooting guide. United Kingdom: Informa healthcare; 2007: 21-32. [DOI:10.3109/9780203090022.002]
30. Chen SU, Lien YR, Chao KH, HO HN, Yang YS, Lee TY. Effects of cryopreservation on meiotic spindles of oocytes and its dynamics after thawing: clinical implications in oocyte freezing. MCE 2003; 202: 101-107. [DOI:10.1016/S0303-7207(03)00070-4]
31. Arav A, Yavin S. Measurement of essential physical properties of vitrification solutions. Theriogenology 2007; 67: 81-89. [DOI:10.1016/j.theriogenology.2006.09.029]
32. Gardner DK, Sheehan CB, Rienzi L, Katz-jaffe M, Larman MG. Analysis of oocyte physiology to improve cryopreservation procedures. Theriogenology 2007; 67: 64-72. [DOI:10.1016/j.theriogenology.2006.09.012]
33. Amir A, Zvi R. Do chilling injury and heat stress share the same mechanism of injury in oocytes? MCE 2008; 282: 150-152. [DOI:10.1016/j.mce.2007.11.026]
34. Zenzes MT, Bielecki R, casper RF, Leibo SP. Effects of chilling to 0°C on the morphology of meiotic spindles in human metaphase II oocytes. Fertil Stril 2001; 75: 769-777. [DOI:10.1016/S0015-0282(00)01800-8]
35. Stachecki JJ, Cohen J, Schimmel T, Willadson SM. Fetal development of mouse oocytes and zygotes cryopreserved in a nonconventional freezing medium. Cryobiology 2002; 44: 5-13. [DOI:10.1016/S0011-2240(02)00007-X]
36. Ciotti PM, Porcu E, Notarangelo L, Magrini O, Bazzocchi A, Venturoli S. Meiotic spindle recovery is faster in vitrification of human oocytes compared to slow freezing. Fertil Stril 2008; 91: 2399-2407. [DOI:10.1016/j.fertnstert.2008.03.013]
37. Elder K, Dale B. In vitro fertilization. Second edition. United Kingdom: Cambridge university press; 2003.
38. Schroeder AC, Champlin AK, Mobraaten LE, Eppig JJ. Developmental capacity of mouse oocytes cryopreserved before and after maturation in vitro. J Reprod Fertil 1990; 89: 43-50. [DOI:10.1530/jrf.0.0890043]
39. Zhang J, Nedambale TL, Yang M, Li J. Improved development of ovine matured oocyte following solid surface vitrification (SSV): Effect of cumulus cells and cytoskeleton stabilizer. Anim Reprod Sci 2009; 110: 46-55. [DOI:10.1016/j.anireprosci.2007.12.023]
40. Wang HY, Lu SS, Lun ZR. Glass transition behavior of the vitrification solutions containing propanediol, dimethyl sulfoxide and polyvinyl alcohol. Cryobiology 2009; 58: 115-117. [DOI:10.1016/j.cryobiol.2008.10.131]
41. Eroglu A, Toner M, Toth TL. Beneficial effect of microinjected trehalose on the cryosurvival of human oocytes. Fertil Stril 2002; 77: 152-158. [DOI:10.1016/S0015-0282(01)02959-4]
42. Stachecki JJ, Cohen J, Willadsen S. Detrimental Effects of Sodium during Mouse Oocyte Cryopreservation. Biol Rerod 1998; 59:395-400. [DOI:10.1095/biolreprod59.2.395]
43. Stachecki JJ, Cohen J, Willadsoen SM. Cryopreservation of unfertilized mouse oocytes: The effect of replacing sodium with choline in the freezing medium. Cryobiology 1998; 37: 346-354. [DOI:10.1006/cryo.1998.2130]
44. Larman MK, Sheehan CB, Gardner DK. Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes. Reproduction 2006; 131: 53-61. [DOI:10.1530/rep.1.00878]
45. Chian RC, Kuwayama M, Tan L, Tan J, Kato O, Nagai T. High survival rate of bovine oocytes matured in vitro following vitrification. J Reprod Dev 2004; 50: 685-696. [DOI:10.1262/jrd.50.685]
46. VandeVoort CA, Shirley CR, Hill DL, Leibo SP. Effects of cryoprotectants and cryopreservation on germinal vesicle-stage cumulus-oocyte complexes of rhesus monkeys. Fertil Stril 2008; 90: 805-816. [DOI:10.1016/j.fertnstert.2007.06.105]
47. Rupert-Lingham CJ, Paynter SJ, Godfrey J, Fuller BJ, Shaw RW. Developmental potential of murine germinal vesicle stage cumulus-oocyte complexes following exposure to dimethylsulphoxide or cryopreservation: Loss of membrane integrity of cumulus cells after thawing. Hum Reprod 2003; 18: 392-398. [DOI:10.1093/humrep/deg071]

Send email to the article author

© 2021 CC BY-NC 4.0 | International Journal of Reproductive BioMedicine

Designed & Developed by : Yektaweb