Search published articles

Showing 5 results for Mozdarani

Najmeh Jouyan, Elham Davoudi Dehaghani, Sara Senemar, Ashraf Shojaee, Hossein Mozdarani,
Volume 10, Issue 2 (7-2012)

Background: Chromosome abnormality (CA) including Sex chromosomes abnormality (SCAs) is one of the most important causes of disordered sexual development and infertility. SCAs formed by numerical or structural alteration in X and Y chromosomes, are the most frequently CA encountered at both prenatal diagnosis and at birth.
Objective: This study describes cytogenetic findings of cases suspected with CA referred for cytogenetic study.
Materials and Methods: Blood samples of 4151 patients referred for cytogenetic analysis were cultured for chromosome preparation. Karyotypes were prepared for all samples and G-Banded chromosomes were analyzed using x100 objective lens. Sex chromosome aneuploidy cases were analyzed and categorized in two groups of Turners and Klinefelter’s syndrome (KFS).
Results: Out of 230 (5.54%) cases with chromosomally abnormal karyotype, 122 (30%) cases suspected of sexual disorder showed SCA including 46% Turner’s syndrome, 46% KFS and the remaining other sex chromosome abnormalities. The frequency of classic and mosaic form of Turner’s syndrome was 33% and 67%, this was 55% and 45% for KFS, respectively.
Conclusion: This study shows a relatively high sex chromosome abnormality in this region and provides cytogenetic data to assist clinicians and genetic counselors to determine the priority of requesting cytogenetic study. Differences between results from various reports can be due to different genetic background or ethnicity.
Sahar Moghbelinejad, Hossein Mozdarani, Zahra Rezaeian,
Volume 11, Issue 5 (7-2013)

Background: Irradiation is one of the major causes of induced sperm DNA damage. Various studies suggested a relation between sperm DNA damage and fertilization rate after intra-cytoplasmic sperm injection (ICSI).
Objective: In this study, fertilization rate and premature chromosome condensation (PCC) formation after ICSI of hamster oocytes with irradiated sperms from normal and oligosperm individuals was investigated.
Materials and Methods: Human sperms were classified according to counts to normal and oligosperm. Ten samples were used for each group. Golden hamster oocytes were retrieved after super ovulation by PMSG and HCG injection. From retrieved oocytes, 468 were in metaphase II. Control and 4 Gy gamma irradiated sperms were then injected into oocytes. After pronuclei formation in injected oocytes and formation of 8 cells embryos, slides were prepared using Tarkowskie's standard air-drying technique. The frequency of embryos and PCC were analyzed using 1000× microscope after staining in 5% Giemsa.
Results: The extent of embryo development in oocytes injected by irradiated sperms was lower than those injected by non-irradiated sperms (p=0.0001). The frequency of PCC in failed fertilized oocytes was significantly higher in oligosperms (46%) compared with normal ones (0%), but there was no significant difference between irradiated and non-irradiated samples in each group (p=0.12).
Conclusion: The results showed that irradiation of sperms might influence the fertilization outcome possibly due to sperm DNA damage. One possible cause of precluding oocytes from fertilization in oligosperm individuals might be the formation of PCC.
Tahere Dehghan, Hossein Mozdarani, Arezoo Khoradmehr, Seyed Mehdi Kalantar, Mohsen Bakhshandeh, Fathollah Bouzarjomehri, Seyed Milad Kalantar, Morteza Sepehr Javan,
Volume 12, Issue 8 (8-2014)

Background: Radiotherapy has many side effects on fertilization in young women. Radiation can lead to ovarian failure in women who underwent abdomen or pelvic radiotherapy.
Objective: This study helps us to investigate ovarian response of NMRI female mice to ovarian stimulating hormones (PMSG, HCG) after whole-body gamma irradiation.
Materials and Methods: 45 pregnant mice were divided into two groups of control and experimental. The experimental group was classified into three sub-groups: Irradiation group (2 or 4Gy),Superovulation group (10 or 15IU),and superovulation and gamma-radiation group (2Gy & 10IU, 2Gy & 15IU, 4Gy & 10IU,4Gy & 15IU). Female mice were killed and embryos were removed from oviduct .The number of embryos cells counted and the quality of them was evaluated in each group. Kruskal-Wallis test and Mann-Whitney test were used to analyze the data.
Results: There was a significant difference in the number of 2-4 cells grade D embryos in 2Gy & 15IU group compared with control and 2Gy groups (p=0.01), and the number of embryos in 4Gy group was more than in 10IU and 15IU (p=0.03) and 2Gy & 15IU groups (p=0.01). It was more significantly embryos in 4Gy & 15IU group compared to 2Gy & 15IU group (p=0.01).In addition There were no significant differences in the number of 2-4 cells grades A, B and C embryos and also number of 4-8 cells grades A, B and C, D embryos in groups.
Conclusion: The concurrent use of ovulation stimulating hormones and gamma rays ameliorates this problem of drastic decrease in number of living embryos due to whole-body irradiation.
Tahere Dehghan, Hossein Mozdarani, Arezoo Khoradmehr, Seyed Mehdi Kalantar,
Volume 14, Issue 4 (4-2016)

Background: Many cancer patients receive radiotherapy which may lead to serious damages to the ovary storage and the matrix muscle state. Some of these patients may admit to infertility clinics for having pregnancy and on the other hand hormonal administration for superovulation induction is a routine procedure in assisted reproduction technology (ART) clinics.
Objective: This study aimed to investigate fertility and fetuses of hormone treated super ovulated female mice who had received whole-body gamma irradiation before mating.
Materials and Methods: Female mice were randomly categorized into a control group and 3 experimental groups including: Group I (Irradiation), Group II (Superovulation), and Group III (Superovulation and Irradiation). In hormone treated groups, mice were injected with different doses of pregnant mare's serum gonadotropin (PMSG) followed with human chorionic gonadotropin (HCG). Irradiation was done using a Co-60 gamma ray generator with doses of 2 and 4 Gy. Number of fetuses counted and the fetus’s weight, head circumference, birth height, the number of live healthy fetuses, the number of fetuses with detected anomalies in the body, the sum of resorption and arrested fetuses were all recorded as outcome of treatments.
Results: In the group I and group II, increased radiation and hormone dose led to a decrease in the number of survived fetuses (45 in 2 Gy vs. 29 in 4 Gy for irradiated group) as well as from 76 in 10 units into 48 in 15 units. In the group III, a higher dose of hormone in the presence of a 2 Gy irradiation boosted the slink rate; i.e. the number of aborted fetuses reached 21 cases while applying the dose of 15 Iu, whereas 6 cases of abortion were reported applying the hormone with a lower dose. Among different parameters studied, there was a significant difference in parameters of weight and height in the mouse fetuses (p=0.01).
Conclusion: The data indicated that use of ovarian stimulating hormones in mice that received pre mating gamma irradiation did not significantly increase the pregnancy rates.

Sahar Moghbelinejad, Hossein Mozdarani, Pegah Ghoraeian, Reihaneh Asadi,
Volume 16, Issue 3 (March 2018)

The male factor contributes to 50% of infertility. The cause of male infertility is idiopathic and could be congenital or acquired. Among different factors which are involved in idiopathic male infertility, genetic factors are the most prevalent causes of the disease. Considering, the high prevalence of male infertility in Iran and the importance of genetic factors in the accession of it, in this article we reviewed the various studies which have been published during the last 17 yr on the genetic basis of male infertility in Iran. To do this, the PubMed and Scientific information database (SID) were regarded for the most relevant papers published in the last 17 yr referring to the genetics of male factor infertility using the keywords „„genetics‟‟, “cytogenetic”, „„male infertility”, and “Iranian population”. Literatures showed that among the Iranian infertile men Yq microdeletion and chromosomal aberrations are two main factors that intervene in the genetics of male infertility. Also, protamine deficiency (especially P2) is shown to have an influence on fertilization rate and pregnancy outcomes. The highest rate of sperm DNA damages has been found among the asthenospermia patients. In several papers, the relation between other important factors such as single gene mutations and polymorphisms with male infertility has also been reported. Recognition of the genetic factors that influence the fertility of Iranian men will shed light on the creation of guidelines for the diagnosis, consultation, and treatment of the patients."

Page 1 from 1     

© 2020 All Rights Reserved | International Journal of Reproductive BioMedicine

Designed & Developed by : Yektaweb