Search published articles


Showing 2 results for Favaedi

Neda Heydarian, Raha Favaedi, Mohammad Ali Sadighi Gilani, Maryam Shahhoseini,
Volume 14, Issue 6 (6-2016)
Abstract

Background: The availability of testis specific genes will be of help in choosing the most promising biomarkers for the detection of testicular sperm retrieval in patients with non-obstructive azoospermia (NOA). Testis specific chromodomain protein Y 1 (CDY1) is a histone acetyltransferase which concentrates in the round spermatid nucleus, where histone hyperacetylation occurs and causes the replacement of histones by the sperm-specific DNA packaging proteins, TNPs and PRMs.
Objective: The aim was to evaluate CDY1 gene as a marker for predicting of successful sperm retrieval in NOA patients.
Materials and Methods: This research was conducted on 29 patients with NOA who had undergone testicular sperm extraction (TESE) procedure. NOA patients were subdivided into patients with successful sperm retrieval (NOA+, n=12) and patients with unsuccessful sperm retrieval (NOA-, n=17). Relative expression of CDY1 gene and chromatin incorporation of CDY1 protein were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and ELISA assay, respectively.
Results: Quantification of mRNA relative expression and incorporation of CDY1 protein in chromatin showed significant lower expressions and protein levels of CDY1 in testis tissues of NOA- in comparison to NOA+ group.
Conclusion: The findings in this study demonstrated a correlation between the low levels of CDY1 function and unsuccessful sperm recovery in the testicular tissues of NOA- compared to NOA+ patients. Therefore, it can be reasonable to consider CDY1 as a potential biomarker for predicting the presence of spermatozoa, although the claim needs more samples to be confirmed.
Fatameh Shariati, Raha Favaedi, Fariba Ramazanali, Pegah Ghoraeian, Parvaneh Afsharian, Behrouz Aflatoonian, Reza Aflatoonian, Maryam Shahhoseini,
Volume 16, Issue 12 (December 2018)
Abstract

Background: Endometriosis is a common, chronic inflammatory disease which is defined as an overgrowth of endometrial tissue outside the uterine cavity. The etiology of this disease is complex and multifactorial but there is a strong evidence that supports the presence of endometrial stem cells and their possible involvement in endometriosis.
Objective: In this study, we analyzed the mRNA expression of REX-1 stemness gene and reconsidered three other stemness genes SOX-2, NANOG, OCT-4 in women with endometriosis compared to normal endometrium.
Materials and Methods: Ten ectopic and ten eutopic tissue samples along with 23 normal endometrium specimens were recruited in this study. The expression levels of OCT-4, NANOG, SOX-2, and REX-1 genes were evaluated by the quantitative real-time polymerase chain reaction.
Results: The transcription levels of OCT-4, NANOG, and SOX-2 mRNA were significantly increased in ectopic lesions compared with eutopic and control group (p = 0.041, p = 0.035, p = 0.048), although the REX-1 mRNA increase was not significant between endometriosis and control groups. Also, there were differences in the expression level of these genes in normal endometrium during the menstrual cycles (p = 0.031, p = 0.047, p = 0.031).
Conclusion: Based on our data, we confirm the dynamic role of stemness genes in proliferation and growth of normal endometrium during the menstrual cycle and conclude that differential expression 

Page 1 from 1     

© 2021 All Rights Reserved | International Journal of Reproductive BioMedicine

Designed & Developed by : Yektaweb