Volume 15, Issue 12 (12-2017)                   IJRM 2017, 15(12): 795-802 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jabarpour M. Evaluation of the effect of follicular stimulating hormone on the in vitro bovine spermatogonial stem cells self-renewal: An experimental study. IJRM. 2017; 15 (12) :795-802
URL: http://journals.ssu.ac.ir/ijrmnew/article-1-930-en.html
Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. , ptajik@ut.ac.ir
Abstract:   (27 Views)
Background: Spermatogonial stem cells (SSCs) are undifferentiated cells which are highly reproducible and expandable. Several studies have been conducted to reproduce these cells in culture. They used growth factors, hormones and different feeder cells to improve survival and proliferation of SSCs. Objective: This study was conducted to evaluate the effects of follicular stimulating hormone (FSH) on gene expression of fibroblast growth factor (FGF2) and glial cell-derived neurotrophic factor (GDNF) in Sertoli cells. Materials and Methods: Sertoli cells and SSCs were isolated from 3-5 month-old calves. Bovine testicular cells were cultured for 15 days with or without FSH. Identification of these cells was confirmed by immunocytochemistry analysis. Colony formation of SSCs was evaluated using an inverted microscope. The gene expression of FGF2 and GDNF and the gene markers bcl6b, thy-1, and C-kit were evaluated using the quantitative RT-PCR technique. Results: The results indicated that FSH increased colonization of SSCs. the expression of GDNF, FGF2, and markers of undifferentiated spermatogonia was increased following culture in control and FSH groups (p<0.05), this increase was more in FSH group. Conversely, the expression of C-kit was decreased in both groups (p<0.05). Conclusion: The results showed that FSH can increase the self-renewal of SSCs in vitro via upregulation of GDNF and FGF2 expression in Sertoli cells.
Full-Text [PDF 565 kb]   (14 Downloads)    
Type of Study: Original Article |
Received: 2018/02/5 | Accepted: 2018/02/5 | Published: 2018/02/5

References
1. Oatley JM, Brinster RL. Regulation of spermatogonial stem cell self-renewal in mammals. Annu Rev Cell Dev Biol 2008; 24: 263-286. [DOI:10.1146/annurev.cellbio.24.110707.175355]
2. Kubota H, Avarbock MR, Brinster RL. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Nati Acad Sci USA 2003; 100: 6487-6492. [DOI:10.1073/pnas.0631767100]
3. Reding SC, Stepnoski AL, Cloninger EW, Oatley JM. THY1 is a conserved marker of undifferentiated spermatogonia in the pre-pubertal bull testis. Reproduction 2010; 139: 893-903. [DOI:10.1530/REP-09-0513]
4. Oatley JM, Avarbock MR, Telaranta AI, Fearon DT, Brinster RL. Identifying genes important for spermatogonial stem cell self-renewal and survival. Proc Nati Acad Sci USA 2006; 103: 9524-9529. [DOI:10.1073/pnas.0603332103]
5. Oatley JM, Avarbock MR, Brinster, RL. Glial cell line-derived neurotrophic factor regulation of genes essential for self-renewal of mouse spermatogonial stem cells is dependent on Src family kinase signaling. J Biol Chem 2007; 282: 25842-25851. [DOI:10.1074/jbc.M703474200]
6. Schrans-Stassen BH, van de Kant HJ, de Rooij DG, van Pelt AM. Differential expression of c-kit in mouse undifferentiated and differentiating type a spermatogonia. Endocrinology 1999; 140: 5894-5900. [DOI:10.1210/endo.140.12.7172]
7. Shetty G, Meistrich, ML. The missing niche for spermatogonial stem cells: do blood vessels point the way? Cell Stem Cell 2007; 1: 361-363. [DOI:10.1016/j.stem.2007.09.013]
8. Meng X, Lindahl M, Hyvanen, ME, Parvinen, M, de Rooij DG, Hess MW, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 2000; 287: 1489-1493. [DOI:10.1126/science.287.5457.1489]
9. Kubota H, Avarbock MR, Brinster RL. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Nati Acad Sci USA 2004; 101: 16489-16494. [DOI:10.1073/pnas.0407063101]
10. Hofmann MC, Braydich-Stolle L, Dym M. Isolation of male germ-line stem cells; influence of GDNF. Dev Biol 2005; 279: 114-124. [DOI:10.1016/j.ydbio.2004.12.006]
11. Skinner MK. Growth factors in gonadal development. J Anim Sci 1992; 70 (Suppl.): 30-41. [DOI:10.2527/1992.70suppl_230x]
12. Hill JR, Dobrinski I. Male germ cell transplantation in livestock. Reprod Fertil Dev 2005; 18: 13-18. [DOI:10.1071/RD05123]
13. de Rooij DG, Russell LD. All you wanted to know about spermatogonia but were afraid to ask. J Androl 2000; 21: 776-798.
14. Anjamrooz SH, Movahedin M, Tiraihi T, Mowla SJ. In vitro effects of epidermal growth factor, follicle stimulating hormone and testosterone on mouse spermatogonial cell colony formation. Reprod Fertil Dev 2006; 18: 709-720. [DOI:10.1071/RD05126]
15. Aponte PM, Soda T, Teerds KJ, Mizrak SC, Van de Kant HJ, De Rooij DG. Propagation of bovine spermatogonial stem cells in vitro. Reproduction 2008; 136: 543-557. [DOI:10.1530/REP-07-0419]
16. Izadyar F, Den Ouden K, Stout TA, Stout J, Coret J, Lankveld DP, Spoormakers TJ, et al. Autologous and homologous transplantation of bovine spermatogonial stem cells. Reproduction 2003; 126: 765-774. [DOI:10.1530/rep.0.1260765]
17. Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, et al. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 2003; 69: 612-616. [DOI:10.1095/biolreprod.103.017012]
18. Sadate-Ngatchou PI, Pouchnik DJ, Griswold MD. Identification of testosterone-regulated genes in testes of hypogonadal mice using oligonucleotide microarray. Mol Endocrinol 2004; 18: 422-433. [DOI:10.1210/me.2003-0188]
19. Johnston H, Baker PJ, Abel M, Charlton HM, Jackson G, Fleming L, et al. Regulation of sertoli cell number and activity by follicle-stimulating hormone and androgen during postnatal development in the mouse. Endocrinology 2004; 145: 318-329. [DOI:10.1210/en.2003-1055]
20. Tadokoro Y, Yomogida K, Ohta H, Tohda A, Nishimune Y. Homeostatic regulation of germinal stem cell proliferation by the gdnf/fsh pathway. Mech Dev 2002; 113: 29-39. [DOI:10.1016/S0925-4773(02)00004-7]
21. Akbarinejad V, Tajik P, Movahedin M, Youssefi R. Effect of removal of spermatogonial stem cells (SSCs) from in vitro culture on gene expression of niche factors in bovine. Avicenna J Med Biotechnol 2016; 8: 133-138.
22. Shafiei Sh, Tajik P, Ghasemzadeh Nava H, Movahedin M, Talebkhan Garoussi M, Qasemi Panahi B, et al. Isolation of bovine spermatogonial cells and co-culture with prepubertal Sertoli cells in the presence of colony stimulating factor-1. Iran J Vet Med 2013; 7: 83-90.
23. Akbarinejad V, Tajik P, Movahedin M, Youssefi R, Shafiei S, Mazaheri Z. Effect of extracellular matrix on bovine spermatogonial stem cells and gene expression of niche factors regulating their development in vitro. Anim Reprod Sci 2015; 157: 95-102. [DOI:10.1016/j.anireprosci.2015.04.003]
24. Anway MD, Folmer J, Wright WW, Zirkin BR. Isolation of sertoli cells from adult rat testes: An approach to ex vivo studies of sertoli cell function. Biol Reprod 2003; 68: 996-1002. [DOI:10.1095/biolreprod.102.008045]
25. Tajik P, Barin A, Movahedin M, Zarnani AH, Hadavi R, Moghaddam G, et al. Nestin, a neuroectodermal stem cell marker, is expressed by bovine sertoli cells. Comp Clin Pathol 2012; 21:395-399. [DOI:10.1007/s00580-010-1105-3]
26. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods 2001; 25: 402-408. [DOI:10.1006/meth.2001.1262]
27. Meehan T, Schlatt S, O'Bryan MK, de Kretser DM, Loveland KL. Regulation of germ cell and Sertoli cell development byactivin, follistatin, and FSH. Dev Biol 2000; 220: 225-237. [DOI:10.1006/dbio.2000.9625]
28. França LR, Avelar GF, Almeida FF. Spermatogenesis and sperm transit through the epididymis in mammals with emphasis on pigs. Theriogenology 2005; 63: 300-318. [DOI:10.1016/j.theriogenology.2004.09.014]
29. Lamb DJ, Spotts GS, Shubhada S, Baker KR. Partial characterization of a unique mitogenic activity secreted by rat Sertoli cells. Mol Cell Endocrinol 1991; 79: 1-12. [DOI:10.1016/0303-7207(91)90089-B]
30. Ryu BY, Orwig KE, Kubota H, Avarbock MR, Brinster RL. Phenotypic and functional characteristics of spermatogonial stem cells in rats. Dev Biol 2004; 274: 158-170. [DOI:10.1016/j.ydbio.2004.07.004]
31. Hermann BP, Sukhwani M, Simorangkir DR, Chu T, Plant TM, Orwig KE. Molecular dissection of the male germ cell lineage identifies putative spermatogonial stem cells in rhesus macaques. Hum Reprod 2009; 24: 1704-1716. [DOI:10.1093/humrep/dep073]
32. Abbasi H, Tahmoorespur M, Hosseini SM, Nasiri Z, Bahadorani M, Hajian M, et al. THY1 as a reliable marker for enrichment of undifferentiated spermatogonia in the goat. Theriogenology 2013; 80: 923-932. [DOI:10.1016/j.theriogenology.2013.07.020]
33. Nasiri Z, Hosseini SM, Hajian M, Abedi P, Bahadorani M, Baharvand H, et al. Effects of different feeder layers on short-term culture of prepubertal bovine testicular germ cells in-vitro. Theriogenology 2012; 77: 1519-1528. [DOI:10.1016/j.theriogenology.2011.11.019]
34. Yomogida K, Yagura Y, Tadokoro Y, Nishimune Y. Dramatic expansion of germinal stem cells by ectopically expressed human glial cell line-derived neurotrophic factor in mouse Sertoli cells. Biol Reprod 2003; 69: 1303-1307. [DOI:10.1095/biolreprod.103.015958]
35. Johnston DS, Olivas E, DiCandeloro P, Wright WW. Stage-specific changes in GDNF expression by rat Sertoli cells: a possible regulator of the replication and differentiation of stem spermatogonia. Biol Reprod 2011; 85: 763-769. [DOI:10.1095/biolreprod.110.087676]
36. He Z, Jiang J, Hofmann MC, Dym M. Gfra1 silencing in mouse spermatogonial stem cells results in their differentiation via the inactivation of RET tyrosine kinase. Biol Reprod 2007; 77: 723-733. [DOI:10.1095/biolreprod.107.062513]
37. Ishii K, Kanatsu-Shinohara M, Toyokuni S, Shinohara T. FGF2 mediates mouse spermatogonial stem cell self-renewal via upregulation of Etv5 and Bcl6b through MAP2K1 activation. Development 2012; 139: 1734-1743. [DOI:10.1242/dev.076539]

Send email to the article author


© 2015 All Rights Reserved | International Journal of Reproductive Biomedicine

Designed & Developed by : Yektaweb