Volume 14, Issue 6 (6-2016)                   IJRM 2016, 14(6): 389-396 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hojati Z, Nouri Emamzadeh F, Dehghanian F. Association between polymorphisms of exon 12 and exon 24 of JHDM2A gene and male infertility. IJRM. 2016; 14 (6) :389-396
URL: http://journals.ssu.ac.ir/ijrmnew/article-1-758-en.html
1- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran , z.hojati@sci.ui.ac.ir
2- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
Abstract:   (1067 Views)
Background: Some dynamic changes occurs during spermatogenesis such as histone removal and its replacement with transition nuclear protein and protamine. These proteins are required for packing and condensation of sperm chromatin. JHDM2A is a histone demethylase that directly binds to promoter regions of Tnp1 and Prm1 genes and controls their expression by removing H3K9 at their promoters.
Objective: The association between polymorphisms of exon 12 and exon 24 inJHDM2A gene and male infertility were evaluated for the first time.
Materials and Methods: In this experimental study, 400 infertile men (oligospermia and azoospermia) and normal healthy fathers were evaluated (n=200). Single Strand Conformation Polymorphism (SSCP-PCR) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods were used for screening any polymorphisms that are exist in exon 12 and exon 24.
Results: Exon 24 PCR products were analyzed by RFLP but no polymorphism was found in this exon at the restriction site of EcoRV enzyme. Our monitoring along the whole nucleotides of exon 12 and exon 24 were continued using SSCP method, but we found no change along these exons.
Conclusion: Generally, this study evaluated the association between polymorphisms in exon 12 and exon 24 of JHDM2A gene and male infertility which suggests that polymorphisms of these exons may not be associated with the risk of male infertility.
Full-Text [PDF 272 kb]   (195 Downloads) |   |   Full-Text (HTML)  (77 Views)  
Type of Study: Original Article |

References
1. Rajender S, Avery K, Agarwal A. Epigenetics, spermatogenesis and male infertility. Mutat Res 2011; 727: 62-71. [DOI:10.1016/j.mrrev.2011.04.002]
2. Minocherhomji S, Madon PF, Parikh FR. Epigenetic regulatory mechanisms associated with infertility. Obstet Gynecol Int 2010; 2010: 198709. [DOI:10.1155/2010/198709]
3. Dada R, Kumar M, Jesudasan R, Fernández JL, Gosálvez J, Agarwal A. Epigenetics and its role in male infertility. J Assist Reprod Genet 2012; 29: 213-223. [DOI:10.1007/s10815-012-9715-0]
4. Rousseaux S, Caron C, Govin J, Lestrat C, Faure A-K, Khochbin S. Establishment of male-specific epigenetic information. Gene 2005; 345: 139-153. [DOI:10.1016/j.gene.2004.12.004]
5. Okada Y, Tateishi K, Zhang Y. Histone demethylase JHDM2A is involved in male infertility and obesity. J Androl 2010; 31: 75-78. [DOI:10.2164/jandrol.109.008052]
6. Tateishi K, Okada Y, Kallin EM, Zhang Y. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 2009; 458: 757-761. [DOI:10.1038/nature07777]
7. Martins RP, Ostermeier GC, Krawetz SA. Nuclear Matrix Interactions at the Human Protamine Domain a working model of potentiation. J Biol Chem 2004; 279: 51862-518568. [DOI:10.1074/jbc.M409415200]
8. Godmann M, Lambrot R, Kimmins S. The dynamic epigenetic program in male germ cells: Its role in spermatogenesis, testis cancer, and its response to the environment. Microscop Res Technique 2009; 72: 603-619. [DOI:10.1002/jemt.20715]
9. Yamane K, Toumazou C, Tsukada Y-i, Erdjument-Bromage H, Tempst P, Wong J, et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 2006; 125: 483-495. [DOI:10.1016/j.cell.2006.03.027]
10. Miller S, Dykes D, Polesky H. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16: 1215. [DOI:10.1093/nar/16.3.1215]
11. Cho C, Willis WD, Goulding EH, Jung-Ha H, Choi Y-C, Hecht NB, et al. Haploinsufficiency of protamine-1 or-2 causes infertility in mice. Nature Gen 2001; 28: 82-86. [DOI:10.1038/ng0501-82]
12. Tsukada Y-i, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 2006; 439: 811-816. [DOI:10.1038/nature04433]
13. Klose RJ, Kallin EM, Zhang Y. JmjC-domain-containing proteins and histone demethylation. Nature Rev Genet 2006; 7: 715-727. [DOI:10.1038/nrg1945]
14. Klose RJ, Zhang Y. Regulation of histone methylation by demethylimination and demethylation. Nature Rev Mol Cell Biol 2007; 8: 307-318. [DOI:10.1038/nrm2143]
15. Zhao M, Shirley CR, Hayashi S, Marcon L, Mohapatra B, Suganuma R, et al. Transition nuclear proteins are required for normal chromatin condensation and functional sperm development. Genesis 2004; 38: 200-213. [DOI:10.1002/gene.20019]
16. Agger K, Christensen J, Cloos PA, Helin K. The emerging functions of histone demethylases. Cur Opin Genet Dev 2008; 18: 159-168. [DOI:10.1016/j.gde.2007.12.003]
17. Martianov I, Brancorsini S, Catena R, Gansmuller A, Kotaja N, Parvinen M, et al. Polar nuclear localization of H1T2, a histone H1 variant, required for spermatid elongation and DNA condensation during spermiogenesis. Proc Nat Acad Sci USA 2005; 102: 2808-2813. [DOI:10.1073/pnas.0406060102]
18. Höög C, Schalling M, Grunder‐Brundell E, Daneholt B. Analysis of a murine male germ cell‐specific transcript that encodes a putative zinc finger protein. Mol Reprod Dev 1991; 303: 173-181. [DOI:10.1002/mrd.1080300302]
19. O'Brien KLF, Varghese AC, Agarwal A. The genetic causes of male factor infertility: a review. Fertil Steril 2010; 93: 1-12. [DOI:10.1016/j.fertnstert.2009.10.045]
20. Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y. Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature 2007; 450: 119-123. [DOI:10.1038/nature06236]
21. Tachibana M, Nozaki M, Takeda N, Shinkai Y. Functional dynamics of H3K9 methylation during meiotic prophase progression. EMBO J 2007; 26: 3346-3359. [DOI:10.1038/sj.emboj.7601767]
22. Suikki HE, Kujala PM, Tammela TL, van Weerden WM, Vessella RL, Visakorpi T. Genetic alterations and changes in expression of histone demethylases in prostate cancer. Prostate 2010; 70: 889-898. [DOI:10.1002/pros.21123]
23. Najafipour R, Moghbelinejad S, Hashjin AS, Rajaei F, Rashvand Z. Evaluation of mRNA Contents of YBX2 and JHDM2A Genes on Testicular Tissues of Azoospermic Men with Different Classes of Spermatogenesis. Cell J 2015; 17: 121.
24. Changjun Z, Wenpei P, Li D, Lian H, Yan Z, Donghui F, Keyi T. A preliminary study on epigenetic changes during boar spermatozoa cryopreservation.Cryobiology 2014; 69: 119-127. [DOI:10.1016/j.cryobiol.2014.06.003]
25. Yeste M. Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology 2016; 85: 47-64. [DOI:10.1016/j.theriogenology.2015.09.047]
26. O'Bryan MK, de Kretser D. Mouse models for genes involved in impaired spermatogenesis. Int J Androl 2006; 29: 76-89. [DOI:10.1111/j.1365-2605.2005.00614.x]

Send email to the article author


© 2021 All Rights Reserved | International Journal of Reproductive BioMedicine

Designed & Developed by : Yektaweb