Volume 14, Issue 6 (6-2016)                   IJRM 2016, 14(6): 397-402 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eskandari F, Momeni H R. Protective effect of silymarin on viability, motility and mitochondrial membrane potential of ram sperm treated with sodium arsenite. IJRM. 2016; 14 (6) :397-402
URL: http://journals.ssu.ac.ir/ijrmnew/article-1-757-en.html
1- Department of Biology, Faculty of Science, Arak University, Arak, Iran , h-momeni@araku.ac.ir
2- Department of Biology, Faculty of Science, Arak University, Arak, Iran
Abstract:   (1119 Views)
Background: Sodium arsenite can impair male reproductive function by inducing oxidative stress. Silymarin is known as a potent antioxidant.
Objective: This study was performed to investigate if silymarin can prevent the adverse effect of sodium arsenite on ram sperm viability, motility and mitochondrial membrane potential.
Materials and Methods: Epidydimal spermatozoa obtained from ram were divided into five groups: 1) Spermatozoa at 0 hr, 2) spermatozoa at 180 min (control), 3) spermatozoa treated with sodium arsenite (10 μM) for 180 min, 4) spermatozoa treated with silymarin (20 μM) + sodium arsenite (10 μM) for 180 min and 5) spermatozoa treated with silymarin (20 μM) for 180 min. MTT assay and Rhodamine 123 staining were used to assess sperm viability and mitochondrial membrane potential respectively. Sperm motility was performed according to World Health Organization (WHO) guidelines.
Results: Viability (p<0.01), nonprogressive motility (p<0.001) and intact mitochondrial membrane potential (p<0.001) of the spermatozoa were significantly decreased in sodium arsenite treated group compared to control group. In silymarin + sodium arsenite group, silymarin could significantly reverse the adverse effect of sodium arsenite on these sperm parameters compared to sodium arsenite group (p<0.001). In addition, the application of silymarin alone for 180 minutes could significantly increase progressively motile sperm (p<0.001) and decrease non motile sperm (p<0.01) compared to the control.
Conclusion: Silymarin could compensate the adverse effect of sodium arsenite on viability, nonprogressive motility and mitochondrial membrane potential of ram sperm.
Full-Text [PDF 382 kb]   (435 Downloads) |   |   Full-Text (HTML)  (57 Views)  
Type of Study: Original Article |

1. Flora SJS, Dube SN, Arora U, Kannan GM, Shukla MK, Malhotra PR. Therapeutic potential of meso 2, 3-dimercaptosuccinic acid or 2, 3-dimercaptopropane 1-sulfonate in chronic arsenic intoxication in rats. Biometals 1995; 8:111-116. [DOI:10.1007/BF00142009]
2. Soleimani Mehranjani S, Hemadi M. The effects of sodium arsenite on the testis structure and sex hormones in vasectomised rats. Iran J Reprod Med 2007; 5: 127-133.
3. Ahmad I, Hussain T, Akthar K. Arsenic induced microscopic changes in rat testis. Prof Med J 2008; 15: 287-291.
4. Jana K, Jana S, Samanta PK. Effects of chronic exposure to sodium arsenite on hypothalamo-pituitary-testicular activities in adult rats: possible an estrogenic mode of action. Reprod Biol Endocrinol 2006; 4: 1-13. [DOI:10.1186/1477-7827-4-9]
5. Pant N, Murthy RC, Srivastava SP. Male reproductive toxicity of sodium arsenite in mice. Hum Exp Toxicol 2004; 23: 399-403. [DOI:10.1191/0960327104ht467oa]
6. Mukherjee S, Mukhopadhyay P, others. Studies on arsenic toxicity in male rat gonads and its protection by high dietary protein supplementation. Al Ameen J Med Sci 2009; 2: 73-77.
7. Lee T-C, Ho I-C. Differential cytotoxic effects of arsenic on human and animal cells. Environ Health Perspect 1994; 102 (Suppl.): 101. [DOI:10.1289/ehp.94102s3101]
8. Valko M, Morris H, Cronin MTD. Metals, toxicity and oxidative stress. Curr Med Chem 2005; 12: 1161-1208. [DOI:10.2174/0929867053764635]
9. Khan SA, Ahmed B, Alam T. Synthesis and antihepatotoxic activity of some new chalcones containing 1, 4-dioxane ring system. Pak J Pharm Sci 2006; 19: 290-294.
10. Kohno H, Tanaka T, Kawabata K, Hirose Y, Sugie S, Tsuda H, et al. Silymarin, a naturally occurring polyphenolic antioxidant flavonoid, inhibits azoxymethane-induced colon carcinogenesis in male F344 rats. Int J Cancer 2002; 101: 461-468. [DOI:10.1002/ijc.10625]
11. Kiruthiga P V, Shafreen RB, Pandian SK, Arun S, Govindu S, Devi KP. Protective effect of silymarin on erythrocyte haemolysate against benzo (a) pyrene and exogenous reactive oxygen species (H2O2) induced oxidative stress. Chemosphere 2007; 68: 1511-1518. [DOI:10.1016/j.chemosphere.2007.03.015]
12. Soto C, Recoba R, Barrón H, Alvarez C, Favari L. Silymarin increases antioxidant enzymes in alloxan-induced diabetes in rat pancreas. Comp Biochem Physiol Part C Toxicol Pharmacol 2003; 136: 205-212. [DOI:10.1016/S1532-0456(03)00214-X]
13. Organization WH. WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. Cambridge university press; 1999.
14. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63. [DOI:10.1016/0022-1759(83)90303-4]
15. Scaduto Jr RC, Grotyohann LW. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 1999; 76: 469-477. [DOI:10.1016/S0006-3495(99)77214-0]
16. De Vantéry Arrighi C, Lucas H, Chardonnens D, De Agostini A, others. Removal of spermatozoa with externalized phosphatidylserine from sperm preparation in human assisted medical procreation: effects on viability, motility and mitochondrial membrane potential. Reprod Biol Endocrinol 2009; 7: 1-12. [DOI:10.1186/1477-7827-7-1]
17. Klimowicz-Bodys MD, Batkowski F, Ochrem AS, Savič MA. Comparison of assessment of pigeon sperm viability by contrast-phase microscope (eosin-nigrosin staining) and flow cytometry (SYBR-14/propidium iodide (PI) staining) [evaluation of pigeon sperm viability]. Theriogenology 2012; 77: 628-635. [DOI:10.1016/j.theriogenology.2011.09.001]
18. Campling BG, Pym J, Galbraith PR, Cole SPC. Use of the MTT assay for rapid determination of chemosensitivity of human leukemic blast cells. Leuk Res 1988; 12: 823-831. [DOI:10.1016/0145-2126(88)90036-7]
19. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of radiosensitivity. Cancer Res 1987; 47: 943-946.
20. Levitz SM, Diamond RD. A rapid colorimetric assay of fungal viability with the tetrazolium salt MTT. J Infect Dis 1985; 152: 938-945. [DOI:10.1093/infdis/152.5.938]
21. Aziz DM, Ahlswede L, Enbergs H. Application of MTT reduction assay to evaluate equine sperm viability. Theriogenology 2005; 64: 1350-1356. [DOI:10.1016/j.theriogenology.2005.02.009]
22. Aziz DM. Assessment of bovine sperm viability by MTT reduction assay. Anim Reprod Sci 2006; 92: 1-8. [DOI:10.1016/j.anireprosci.2005.05.029]
23. Park CS, Kim MY, Yi YJ, Chang YJ, Lee SH, Lee JJ, et al. Liquid boar sperm quality during storage and in vitro fertilization and culture of pig oocytes. Asian Australas J Anim Sci 2004; 17: 1369-1373. [DOI:10.5713/ajas.2004.1369]
24. Byun JW, Choo SH, Kim HH, Kim YJ, Hwang YJ, Kim DY. Evaluation of boar sperm viability by mtt reduction assay in beltsville thawing solution extender. Asian Australas J Anim Sci 2008; 21: 494-498. [DOI:10.5713/ajas.2008.70480]
25. Momeni HR, Eskandari N. Effect of vitamin E on sperm parameters and DNA integrity in sodium arsenite-treated rats. Iran J Reprod Med 2012; 10: 249-256.
26. Hosseini M-J, Shaki F, Ghazi-Khansari M, Pourahmad J. Toxicity of arsenic (III) on isolated liver mitochondria: A new mechanistic approach. Iran J Pharm Res 2013; 12 (Suppl.): 121.
27. Lash LH. Mitochondrial glutathione transport: physiological, pathological and toxicological implications. Chem Biol Interact 2006; 163: 54-67. [DOI:10.1016/j.cbi.2006.03.001]
28. Zhang F, Xu Z, Gao J, Xu B, Deng Y. In vitro effect of manganese chloride exposure on energy metabolism and oxidative damage of mitochondria isolated from rat brain. Environ Toxicol Pharmacol 2008; 26: 232-236. [DOI:10.1016/j.etap.2008.04.003]
29. Pourahmad J, Hosseini M-J, Eskandari MR, Shekarabi SM, Daraei B. Mitochondrial/lysosomal toxic cross-talk plays a key role in cisplatin nephrotoxicity. Xenobiotica 2010; 40: 763-771. [DOI:10.3109/00498254.2010.512093]
30. Shen ZY, Shen J, Cai WJ, Hong C, Zheng MH. The alteration of mitochondria is an early event of arsenic trioxide induced apoptosis in esophageal carcinoma cells. Int J Mol Med 2000; 5: 155-163. [DOI:10.3892/ijmm.5.2.155]
31. Green DR, Reed JC. Mitochondria and apoptosis. Sci Pap Ed 1998; 281: 1309-1311.
32. Vernet P, Aitken RJ, Drevet JR. Antioxidant strategies in the epididymis. Mol Cell Endocrinol 2004; 216: 31-39. [DOI:10.1016/j.mce.2003.10.069]
33. Chomsrimek N, Choktanasiri W, Wongkularb A, O-Prasertsawat P. Effect of time between ejaculation and analysis on sperm motility. Thai Obs Gynaecol 2008; 16: 109-114.
34. Calamera JC, Fernandez PJ, Buffone MG, Acosta AA, Doncel GF. Effects of long-term in vitro incubation of human spermatozoa: functional parameters and catalase effect. Andrologia 2001; 33: 79-86. [DOI:10.1046/j.1439-0272.2001.00409.x]

Send email to the article author

© 2021 All Rights Reserved | International Journal of Reproductive BioMedicine

Designed & Developed by : Yektaweb