Thyroid dysfunction and pregnancy outcomes

Sima Nazarpour1 Ph.D. Candidate, Fahimeh Ramezani Tehrani2 M.D., Masoumeh Simbar1 Ph.D., Fereidoun Azizi3 M.D.

Abstract

Background: Pregnancy has a huge impact on the thyroid function in both healthy women and those that have thyroid dysfunction. The prevalence of thyroid dysfunction in pregnant women is relatively high.

Objective: The objective of this review was to increase awareness and to provide a review on adverse effect of thyroid dysfunction including hyperthyroidism, hypothyroidism and thyroid autoimmune positivity on pregnancy outcomes.

Materials and Methods: In this review, Medline, Embase and the Cochrane Library were searched with appropriate keywords for relevant English manuscript. We used a variety of studies, including randomized clinical trials, cohort (prospective and retrospective), case-control and case reports. Those studies on thyroid disorders among non-pregnant women and articles without adequate quality were excluded.

Results: Overt hyperthyroidism and hypothyroidism has several adverse effects on pregnancy outcomes. Overt hyperthyroidism was associated with miscarriage, stillbirth, preterm delivery, intrauterine growth retardation, low birth weight, preeclampsia and fetal thyroid dysfunction. Overt hypothyroidism was associated with abortion, anemia, pregnancy-induced hypertension, preeclampsia, placental abruption, postpartum hemorrhage, premature birth, low birth weight, intrauterine fetal death, increased neonatal respiratory distress and infant neuro developmental dysfunction. However the adverse effect of subclinical hypothyroidism, and thyroid antibody positivity on pregnancy outcomes was not clear. While some studies demonstrated higher chance of placental abruption, preterm birth, miscarriage, gestational hypertension, fetal distress, severe preeclampsia and neonatal distress and diabetes in pregnant women with subclinical hypothyroidism or thyroid autoimmunity; the other ones have not reported these adverse effects.

Conclusion: While the impacts of overt thyroid dysfunction on feto-maternal morbidities have been clearly identified and its long term impact on childhood development is well known, data on the early and late complications of subclinical thyroid dysfunction during pregnancy or thyroid autoimmunity are controversial. Further studies on maternal and neonatal outcomes of subclinical thyroid dysfunction maternal are needed.

Key words: Thyroid disease, Pregnancy outcome, Hypothyroidism, Hyperthyroidism.

This article extracted from Ph.D. thesis. (Sima Nazarpour)

Introduction

Thyroid hormones have profound variation during the life span and are associated with severe adverse health impacts (1, 2). Pregnancy, as an important reproductive event, has a profound but reversible effect on the thyroid gland and its functions. Pregnancy is actually a state of excessive thyroid stimulation leading to an increase in thyroid size by 10% in iodide sufficient areas and 20-40% in iodide deficient regions (3). Furthermore following the physiological and hormonal changes caused by pregnancy and human chorionic gonadotropin (HCG) the production of thyroxin (T4) and triiodothyronine (T3) increase up to 50% leading to 50% increase in a woman’s daily iodine need, while Thyroid-stimulating hormone (TSH) levels are decreased, especially in first trimester (4). In an iodide sufficient area, these thyroid adaptations during pregnancy are well tolerated, as stored inner thyroid iodide is enough; however in iodide deficient areas, these physiological adaptations lead to significant changes during pregnancy (5).

Furthermore in women who suffered from thyroid dysfunction prior to pregnancy, the hormonal changes mentioned are magnified, leading to possibly adverse pregnancy outcomes if not been treated appropriately. Furthermore the mode of delivery may
additionally have adverse impact on fetal-pituitary-thyroid axis (6). The prevalence of thyroid dysfunction in pregnant women is relatively high so that overt thyroid dysfunction occurs in 2-3% of pregnancies, and subclinical dysfunction in 10% of pregnancies (7) and thyroid autoimmunity is even more prevalent (8).

Given the high prevalence of thyroid disturbances in pregnancy and lack of adequate review article summarizing the effect of thyroid dysfunction on pregnancy and neonatal outcomes, we aimed to summarize the adverse effects of thyroid dysfunction including hyperthyroidism, hypothyroidism and thyroid autoimmunity positivity on pregnancy outcomes. Research question was: “are thyroid disorders in pregnant women associated with adverse effects on pregnancy outcomes”?

Evidence acquisition

This review study was conducted with a prospective protocol. We searched Medline (1985-2013), Embase (1985-2013) and the Cochrane Library (2012) for relevant English manuscripts. Using keywords including “thyroid”, “thyroid dysfunction”, “thyroid disorder”, “hyperthyroidism”, “hypothyroidism”, “euthyroidism”, “subclinical hypothyroidism”, “subclinical hyperthyroidism”, “thyroid autoantibodies”, “pregnancy outcome”, “miscarriage”, “abortion”, “pregnancy loss”, “preterm”, “premature”, “early labor”, “Thyroid peroxidase” and “cognitive” to generate a subset of citations relevant to our research question. Subclinical hypothyroidism (SCH) is defined as a serum TSH level above the upper limit of normal despite normal levels of serum free thyroxine and subclinical hyperthyroidism is defined as serum thyroid hormone levels within their respective reference ranges in the presence of low-undetectable serum TSH levels (9). Overt hypothyroidism is defined as a serum free T4 level lower than the upper limit of normal and overt hyperthyroidism is defined as a serum free T4 level above the upper limit of normal. Thyroid autoimmunity is defined as increase in thyroid auto antibodies above the upper limit of normal with or without thyroid disturbances.

The full manuscripts of all citations that met our study objective were selected and obtained. In cases of duplicate publications, we selected the most recent and complete versions. From the 4480 citations identified from electronic searches, at the beginning, we found 512 related articles; 130 studies on overt hypothyroidism, 203 on subclinical hypothyroidism, 69 on overt hyperthyroidism, 43 on subclinical hyperthyroidism, and 67 on thyroid immunity. Of these articles, 58 met our study objectives, including 11 on hyperthyroidism, 22 on hypothyroidism and 26 on thyroid immunity.

We included all qualified original articles on our study subject; including randomized clinical trials, cohort (prospective and retrospective), case-control and case reports. We excluded non-English manuscript, those conducted on non-pregnant women and those with poor quality methodology. The titles and abstracts of all of the studies were evaluated by two non-dependent persons and those met inclusion criteria were appraised.

Figure 1. The number of articles that were reviewed in the study.
Results

Hyperthyroidism and its adverse pregnancy and neonatal outcomes

The natural physiological changes during pregnancy can mimic some of the signs observed in hyperthyroidism, including increased in basal metabolism, heart rate, fatigue, anxiety, palpitations, heat intolerance, warm and wet skin, hand tremors and systolic murmur; as a result the diagnosis of hyperthyroidism during pregnancy could cause clinical difficulties (9-11). Pregnant women, who suffer from hyperthyroidism, have more severe tachycardia and thyromegaly, along with exophthalmia, and lack of weight gain despite receiving adequate food (10).

Overt hyperthyroidism during pregnancy was not prevalent and was reported in 2 out of 1000 pregnancies (0.2%), while subclinical hyperthyroidism was occurred in 1.7% of pregnancies (11, 12). The most prevalent reason for hyperthyroidism during pregnancy was the transient hyperthyroidism resulting from hyperemesis gravidarum (THHG) due to the thyroid stimulation of beta-HCG (13); it was more prevalent in Asian populations compared to Europeans (14).

Except for THHG, the etiologies of thyrotoxicosis during pregnancy are the same as for non-pregnant women; it is most prevalent in Grave’s Disease caused by thyrotropin receptor antibodies stimulating the thyroid (TRAbs) (11, 15). It is well documented that overt hyperthyroidism has several adverse effects on pregnancy outcomes, e.g. miscarriage, stillbirth, preterm delivery, intrauterine growth retardation, preeclampsia (11, 16). Furthermore women with Graves’ disease have antibodies that can stop or stimulate the fetal anti-TSH receptor of thyroid gland (15, 17, 18).

There is no consensus regarding the adverse effect of subclinical hypothyroidism on pregnancy or neonatal outcomes. Casey et al. reported no significant increase of placenta abruption, preterm labor and low birth weight in pregnancy complicated by subclinical hyperthyroidism in comparison with euthyroid ones (19). Table I summarizes the results of the most relevant studies on the impact of overt and subclinical hyperthyroidism on pregnancy and neonatal outcomes.

Hypothyroidism and its adverse pregnancy and fetal outcomes

Pregnancy can imitate some of the signs that are observed in hypothyroidism, including fatigue, anxiety, constipation, muscle cramps, and weight gain; as a result, the clinical diagnosis of hypothyroidism during pregnancy may be difficult (10, 27). Moreover, most signs of hypothyroidism can be hidden by a woman’s status following the increase in metabolism in pregnancy. Furthermore the thyroid hormonal profile in normal pregnancy can be mis-interoperated as hypothyroidism and as a result the interpretation of thyroid function tests needs trimester-specific reference intervals for a specific population (14, 15). Applying trimester-specific reference ranges of thyroid hormones prevents misclassification of thyroid dysfunction during pregnancy. Compared to hyperthyroidism, hypothyroidism is very common during pregnancy; 2-3% of pregnant women suffer from hypothyroidism (0.3-0.5% overt hypothyroidism and 2-2.5% subclinical hypothyroidism) (11, 28).

While the main etiology for hypothyroidism during pregnancy worldwide is iodide insufficiency, however in iodide sufficient areas its main cause is autoimmune thyroiditis (8). SCH is the most common thyroid dysfunction during pregnancy (11, 29). Its prevalence varies between 1.5-5% based on various definitions, different ethnicity, iodine consumption and nutrition life style as well as study designs (30). While the adverse effects of SCH accompanied with positive TPO antibodies or overt hypothyroidism on pregnancy outcome are well known, however there is controversy on negative impact of SCH without autoimmunity on pregnancy outcomes (27, 31-33). Pregnant women that possess the TPO antibodies during the initiation of their pregnancy are subjected to subclinical hypothyroidism during their pregnancy or thyroid dysfunction after childbirth (12).

Table II and III summarize the studies on adverse outcomes of overt and subclinical hypothyroidism, respectively. As it has been shown the overt hypothyroidism is associated with increase in prevalence of abortion, anemia, pregnancy-induced hypertension, preeclampsia, placental abruption, postpartum hemorrhage, premature birth, low birth weight,
intrauterine fetal death and neonatal respiratory distress (15, 27, 29, 32, 34-41). There is no consensus on adverse impacts of subclinical hypothyroidism on pregnancy outcomes; while some studies demonstrated higher chance of placental abruption, preterm birth, miscarriage, gestational hypertension, fetal distress, severe preeclampsia and neonatal distress and diabetes, the other study have not reported and adverse effect (31, 33, 42, 43, 45, 46). The long term effect of overt hypothyroidism on cognitive function has been well documented; these children have lower IQ and more developmental dysfunction (8, 12, 15, 38-41, 46-48), however there is no consensus on the long term cognitive effects of subclinical hypothyroidism; while some reported loss of motor function and intelligence in infants and children the other reported a normal motor and cognitive function (15, 45, 48, 50, 51). Table IV summarizes the cognitive function of infants and children been affected by overt or subclinical hypothyroidism during pregnancy.

Autoimmune thyroid disorders

Anti-thyroid antibodies are relatively common among women during their reproductive ages, 6-20% of all euthyroid women are positive for anti-thyroid antibodies (8). The presence of anti-thyroid antibodies during a woman's reproductive age is not necessarily followed by a thyroid dysfunction and 10-20% of all pregnant women who are TPO antibody positive remain euthyroid in first trimester (3, 56). Despite the high prevalence of TPO antibody positive among reproductive age women, there is no consensus on the feto-maternal complications of euthyroid pregnant women who are TPO antibody positive. As a result, routine screening of pregnant women for thyroid antibodies is controversial (57, 58).

Table 7 summarizes the results of the most relevant studies regarding the feto-maternal outcomes of thyroid autoimmune positivity in euthyroid women. While adverse outcomes such as abortion, preterm delivery, recurrent miscarriage, hypertension, fetal dyspnea and diabetes are reported in some of studies, other studies report compatible pregnancy outcomes (27, 40, 44, 45, 46, 59-66). Furthermore Ghassabian and Tiemeier showed that the high titration of anti-thyroid peroxidase antibodies (TPO-Ab) during pregnancy associated with an increased risk of cognitive and behavioral problems in preschool children (67).

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year of publication</th>
<th>Location</th>
<th>Type of study</th>
<th>Participants</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davis et al.</td>
<td>1989</td>
<td>USA</td>
<td>Prospective</td>
<td>60 Pregnant women with overt thyrotoxicosis</td>
<td>small for gestational age births, stillbirths, and possibly congenital malformations; Preterm labor, pregnancy induced hypertension thyroid crisis, intranatal growth retardation. Abnormal Thyroid status of neonates.</td>
</tr>
<tr>
<td>Kriplani et al.</td>
<td>1994</td>
<td>India</td>
<td>Prospective</td>
<td>32 pregnancies complicated by hypothyroidism</td>
<td>Low birth weight infants and severe preeclampsia.</td>
</tr>
<tr>
<td>Millar et al.</td>
<td>1994</td>
<td>USA</td>
<td>Retrospective</td>
<td>181 hyperthyroid pregnant women</td>
<td>Low birth weight</td>
</tr>
<tr>
<td>Phojaroenchatchai et al.</td>
<td>2001</td>
<td>Thailand</td>
<td>Retrospective</td>
<td>293 pregnant women with present and past history of hypothyroidism</td>
<td>Neonatal thyrotoxicosis</td>
</tr>
<tr>
<td>Peleg et al.</td>
<td>2002</td>
<td>USA</td>
<td>Retrospective</td>
<td>Twenty-nine women with a history of Graves disease and positive thyroid-stimulating immunoglobulin</td>
<td>Fetal goiter</td>
</tr>
<tr>
<td>Polak et al.</td>
<td>2004</td>
<td>France</td>
<td>Prospective</td>
<td>72 pregnant women with a history of Graves disease.</td>
<td>One fetus had moderate hypothyroidism (1 fetus), goiter (11 fetuses at 32 weeks), and fetal thyroid dysfunction</td>
</tr>
<tr>
<td>Luton et al.</td>
<td>2005</td>
<td>France</td>
<td>Prospective</td>
<td>72 pregnant women (72 fetuses)</td>
<td>Fetal growth restriction, preterm birth and low birth weight, tendency to have a higher rate of pregnancy-induced hypertension.</td>
</tr>
<tr>
<td>Luwan et al.</td>
<td>2011</td>
<td>Thailand</td>
<td>Prospective (cohort)</td>
<td>540 pregnant women (180 with hypothyroidism and 360 controls)</td>
<td>Preeclampsia, superimposed preeclampsia, preterm birth, induction, neonatal intensive care unit admission</td>
</tr>
<tr>
<td>Männistö et al.</td>
<td>2013</td>
<td>USA</td>
<td>Retrospective (cohort)</td>
<td>223512 singleton pregnancies</td>
<td>Subclinical hypothyroidism is not associated with adverse pregnancy outcomes</td>
</tr>
</tbody>
</table>

Table I. The adverse effects of hyperthyroidism (overt/subclinical) on pregnancy and neonatal outcomes

Table II. The adverse effects of hypothyroidism (overt/subclinical) on pregnancy and neonatal outcomes
Table II. The adverse effects of overt hypothyroidism on pregnancy outcomes

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year of publication</th>
<th>Location</th>
<th>Type of study</th>
<th>Participants</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abalovich et al (35)</td>
<td>2002</td>
<td>Argentina</td>
<td>Randomized Clinical Trial</td>
<td>114 women with primary hypothyroidism (16 overt hypothyroidism)</td>
<td>Abortion, premature delivery</td>
</tr>
<tr>
<td>Wolfberg et al (37)</td>
<td>2005</td>
<td>USA</td>
<td>Retrospective</td>
<td>19,969 women with treated hypothyroid disease and 19,487 without thyroid disease</td>
<td>Pre-eclampsia</td>
</tr>
<tr>
<td>Idris et al (36)</td>
<td>2005</td>
<td>England</td>
<td>Retrospective</td>
<td>167 pregnant women</td>
<td>Low birth weight caesarean section</td>
</tr>
<tr>
<td>Cleary Goldman et al (33)</td>
<td>2008</td>
<td>USA</td>
<td>Prospective</td>
<td>10,990 pregnant women</td>
<td>Preterm labor, macronomia, gestational diabetes</td>
</tr>
<tr>
<td>Sahu et al (32)</td>
<td>2010</td>
<td>India</td>
<td>Prospective</td>
<td>633 pregnant women</td>
<td>Pregnancy-induced hypertension, intrauterine growth restriction, intrauterine demise, Neonatal complications, gestational diabetes</td>
</tr>
<tr>
<td>Hirsch et al (38)</td>
<td>2013</td>
<td>Israel</td>
<td>Retrospective case series</td>
<td>306 pregnant women (101 with hyperthyroidism and 205 euthyroid)</td>
<td>Abortions and premature delivery</td>
</tr>
<tr>
<td>Männistö et al (26)</td>
<td>2013</td>
<td>USA</td>
<td>Retrospective</td>
<td>223512 singleton pregnancies</td>
<td>Primary hypothyroidism: Preeclampsia, superimposed preeclampsia, gestational diabetes, preterm birth, induction, cesarean section, intensive-care unit admission</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iatrogenic hypothyroidism: placental abruption, breech presentation, cesarean section after spontaneous labor</td>
</tr>
</tbody>
</table>

Table III: The adverse effects of subclinical hypothyroidism (with/without thyroid autoimmunity) on pregnancy outcomes

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year of publication</th>
<th>Location</th>
<th>Type of study</th>
<th>Participants</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abalovich et al (35)</td>
<td>2002</td>
<td>Argentina</td>
<td>Prospective</td>
<td>114 women with primary hypothyroidism (35 subclinical hypothyroidism)</td>
<td>Abortion, premature delivery</td>
</tr>
<tr>
<td>Stagnaro-Green et al (42)</td>
<td>2005</td>
<td>USA</td>
<td>Prospective (nested-case control)</td>
<td>953 women</td>
<td>Very preterm delivery</td>
</tr>
<tr>
<td>Casey et al (29)</td>
<td>2005</td>
<td>USA</td>
<td>Prospective</td>
<td>25,756 women</td>
<td>Placental abruption, Preterm birth</td>
</tr>
<tr>
<td>Cleary-Goldman et al (33)</td>
<td>2008</td>
<td>USA</td>
<td>Prospective</td>
<td>10,990 patients</td>
<td>Subclinical hypothyroidism was not associated with adverse outcomes.</td>
</tr>
<tr>
<td>Sahu et al (32)</td>
<td>2010</td>
<td>India</td>
<td>Prospective</td>
<td>633 women</td>
<td>Cesarean section rate for fetal distress</td>
</tr>
<tr>
<td>Wilson et al (31)</td>
<td>2012</td>
<td>USA</td>
<td>Prospective</td>
<td>24,883 women</td>
<td>Severe preeclampsia</td>
</tr>
</tbody>
</table>

Subclinical hypothyroidism including negative and positive TPO Ab

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year of publication</th>
<th>Location</th>
<th>Type of study</th>
<th>Participants</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negro et al (27)</td>
<td>2006</td>
<td>Italy</td>
<td>Randomized Clinical Trial</td>
<td>984 pregnant women</td>
<td>Pregnant women who are positive for TPOAb develop impaired thyroid function, increased risk of miscarriage and premature deliveries</td>
</tr>
<tr>
<td>Benhadi et al (43)</td>
<td>2009</td>
<td>Netherlands</td>
<td>Prospective (cohort)</td>
<td>2497 women</td>
<td>Pregnant women without overt thyroid dysfunction, the risk of child loss increased with higher levels of maternal TSH</td>
</tr>
<tr>
<td>Karakosta et al (44)</td>
<td>2012</td>
<td>Greece</td>
<td>Prospective</td>
<td>1170 pregnant women</td>
<td>Increased gestational diabetes and low birth weight neonates among those with high TSH and spontaneous preterm among those without elevated TSH levels</td>
</tr>
</tbody>
</table>
Table IV: The cognitive function of infants and children been affected by overt or subclinical hypothyroidism during pregnancy

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year of publication</th>
<th>Location</th>
<th>Type of the study</th>
<th>Participants</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overt hypothyroidism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liu et al (52)</td>
<td>1994</td>
<td>China</td>
<td>Prospective (cohort)</td>
<td>25216 women</td>
<td>All children showed normal IQs</td>
</tr>
<tr>
<td>Haddow et al (39)</td>
<td>1999</td>
<td>England</td>
<td>Prospective (cohort)</td>
<td>125 children of women with hypothyroidism and 96 control</td>
<td>Adversely affect their children's subsequent performance on neuropsychological tests.</td>
</tr>
<tr>
<td>Pop et al (47)</td>
<td>2003</td>
<td>Netherlands</td>
<td>Prospective</td>
<td>204 (108 neonates who were born to mothers with hypothyroidism and 96 control)</td>
<td>Delay in infant neurodevelopment.</td>
</tr>
<tr>
<td>Kooistra et al (48)</td>
<td>2006</td>
<td>Netherlands</td>
<td>Retrospective (case control)</td>
<td>213 (18 isolated subclinical hypothyroidism, 19 hypothyroxinaemia,</td>
<td>Lower scores on the Neonatal Behavioral Assessment Scale and orientation index</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34 euthyroid TPOAb positive and 142 controls</td>
<td></td>
</tr>
<tr>
<td>Li et al (50)</td>
<td>2010</td>
<td>China</td>
<td>Prospective (cohort)</td>
<td>3659 children and their mothers</td>
<td>Lower motor and intellectual development at 25-30 months.</td>
</tr>
<tr>
<td>Henrichs et al (49)</td>
<td>2010</td>
<td>Netherlands</td>
<td>Prospective (Population-based cohort)</td>
<td>287 pregnant women and their children</td>
<td>Higher risk of expressive language and nonverbal cognitive delay</td>
</tr>
<tr>
<td>Chevrier et al (53)</td>
<td>2011</td>
<td>USA</td>
<td>Prospective (cohort)</td>
<td></td>
<td>No adverse effect on child neurodevelopment.</td>
</tr>
<tr>
<td>Downing et al (54)</td>
<td>2012</td>
<td>USA</td>
<td>Case report</td>
<td>Three women with hypothyroidism</td>
<td>Children had average or above average results on all parameters. Comparative scores of the neuropsychological tests in sibling pairs for full-scale IQ and performance IQ were variable; some scores were higher and some lower in children with congenital hypothyroidism.</td>
</tr>
<tr>
<td>Momotani et al (55)</td>
<td>2012</td>
<td>Japan</td>
<td>Case report</td>
<td>Five women with overt hypothyroidism</td>
<td>The development scores (the Tsumori-Inage Infant's Developmental Test or the Wechsler Intelligence Scale) of all the children turned out to be either normal or advanced.</td>
</tr>
</tbody>
</table>

Subclinical hypothyroidism

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year of publication</th>
<th>Location</th>
<th>Type of the study</th>
<th>Participants</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li et al (50)</td>
<td>2010</td>
<td>China</td>
<td>Prospective (cohort)</td>
<td>213 (18 isolated subclinical hypothyroidism, 19 hypothyroxinaemia,</td>
<td>Lower motor and intellectual development at 25-30 months.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34 euthyroid TPOAb positive and 142 controls</td>
<td></td>
</tr>
<tr>
<td>Ghorbani Behrooz et al (51)</td>
<td>2012</td>
<td>Iran</td>
<td>Prospective (Historical cohort)</td>
<td>62 children of mothers who had subclinical hypothyroidism</td>
<td>No adverse effect on IQ level and cognitive performance of children</td>
</tr>
</tbody>
</table>
Thyroid dysfunction in pregnancy

Table V. The feto-maternal outcomes of thyroid autoimmune positivity in euthyroid pregnant women

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year of publication</th>
<th>Location</th>
<th>Type of Study</th>
<th>Participants</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stagnaro-Green et al</td>
<td>1990</td>
<td>USA</td>
<td>Prospective</td>
<td>552 pregnant women</td>
<td>Increased miscarriage</td>
</tr>
<tr>
<td>Gliome et al</td>
<td>1991</td>
<td>Belgium</td>
<td>Prospective</td>
<td>120 euthyroid pregnant women</td>
<td>Increased spontaneous abortion</td>
</tr>
<tr>
<td>Pratt et al</td>
<td>1993</td>
<td>USA</td>
<td>Retrospective (case control)</td>
<td>45 women and 100 apparently health blood donors served as controls.</td>
<td>Increased recurrent spontaneous abortions</td>
</tr>
<tr>
<td>Gliome et al</td>
<td>1994</td>
<td>Belgium</td>
<td>Prospective</td>
<td>87 healthy pregnant women with thyroid antibodies and normal thyroid function</td>
<td>Increased spontaneous miscarriage and premature deliveries</td>
</tr>
<tr>
<td>Bussen et al</td>
<td>1995</td>
<td>Germany</td>
<td>Retrospective</td>
<td>66 women (22 euthyroid non-pregnant habitual aborters; 22 nulligravidae and 22 multigravidae without endocrine dysfunction as controls).</td>
<td>Increased habitual abortions</td>
</tr>
<tr>
<td>Singh et al</td>
<td>1995</td>
<td>USA</td>
<td>Retrospective</td>
<td>487 subfertile women who had undergone Assisted reproductive technology</td>
<td>Increased miscarriage</td>
</tr>
<tr>
<td>Iijima et al</td>
<td>1997</td>
<td>Japan</td>
<td>Prospective</td>
<td>1,797 healthy pregnant women including 228 cases of positive thyroid autoantibody</td>
<td>Increased spontaneous abortion</td>
</tr>
<tr>
<td>Kutteh et al</td>
<td>1999</td>
<td>USA</td>
<td>Retrospective.</td>
<td>history of infertility who were undergoing Assisted reproductive technology, and 200 healthy, reproductive-aged female controls</td>
<td>Increased recurrent pregnancy loss</td>
</tr>
<tr>
<td>Muller et al</td>
<td>1999</td>
<td>Netherlan ds</td>
<td>Prospective (nested-case control)</td>
<td>173 subfertile women undergoing Invitro fertilization</td>
<td>No increase of miscarriage in women without a history of habitual abortion</td>
</tr>
<tr>
<td>Dendrinos et al</td>
<td>2000</td>
<td>Greece</td>
<td>Retrospective (case control)</td>
<td>45 women (30 euthyroid with Recurrent spontaneous miscarriage and 15 matched controls)</td>
<td>Increased recurrent spontaneous miscarriage</td>
</tr>
<tr>
<td>Bagis et al</td>
<td>2001</td>
<td>Turkey</td>
<td>Retrospective</td>
<td>876 women</td>
<td>Increased abortion</td>
</tr>
<tr>
<td>Poppe et al</td>
<td>2003</td>
<td>Belgium</td>
<td>Prospective, 234 subfertile women undergoing Assisted reproductive technology</td>
<td>Increased miscarriage</td>
<td></td>
</tr>
<tr>
<td>Marai et al</td>
<td>2004</td>
<td>Israel</td>
<td>Retrospective (case control)</td>
<td>66 women (58 with impaired fertility and 28 control parous women)</td>
<td>Increased recurrent miscarriages</td>
</tr>
<tr>
<td>Stagnaro-Green et al</td>
<td>2005</td>
<td>USA</td>
<td>Prospective (nested-case control)</td>
<td>124 Cases and 124 Controls were randomly selected from among the 953 women who delivered at term</td>
<td>Increased very preterm delivery</td>
</tr>
<tr>
<td>Negro et al</td>
<td>2006</td>
<td>Italy</td>
<td>Randomized Clinical Trial</td>
<td>984 pregnant women</td>
<td>Increased miscarriage and premature deliveries</td>
</tr>
<tr>
<td>Ghafoor et al</td>
<td>2006</td>
<td>Pakistan</td>
<td>Prospective, 1,500 pregnant women</td>
<td>Increased low-birth-weight of neonates and high abortion rate</td>
<td></td>
</tr>
<tr>
<td>Negro et al</td>
<td>2007</td>
<td>Italy</td>
<td>Retrospective</td>
<td>416 euthyroid women (42 were positive TPOAb) undergoing Assisted reproductive technology</td>
<td>Increased unsuccessful pregnancy or subsequent miscarriage</td>
</tr>
<tr>
<td>Irvani et al</td>
<td>2008</td>
<td>Iran</td>
<td>Retrospective (case-control)</td>
<td>641 women with a history of 3 or more consecutive pregnancy losses and 269 controls</td>
<td>Increased recurrent abortion</td>
</tr>
<tr>
<td>Cleary-Goldman et al</td>
<td>2008</td>
<td>USA</td>
<td>Prospective</td>
<td>10,990 pregnant women</td>
<td>Increased preterm premature rupture of membranes</td>
</tr>
<tr>
<td>Mainimisti et al</td>
<td>2009</td>
<td>Finland</td>
<td>Prospective</td>
<td>9,247 singleton pregnancies</td>
<td>Increased perinatal death</td>
</tr>
<tr>
<td>Soltangboraee et al</td>
<td>2010</td>
<td>Iran</td>
<td>Retrospective (case control)</td>
<td>95 cases as fertile controls and 70, 78 and 137 cases with infertility and recurrent abortion respectively.</td>
<td>Increased recurrent abortion</td>
</tr>
<tr>
<td>Haddow et al</td>
<td>2010</td>
<td>USA</td>
<td>Prospective</td>
<td>10,062 singleton pregnancies</td>
<td>Increased preterm delivery, premature rupture of membranes, Increased very preterm delivery and respiratory distress</td>
</tr>
<tr>
<td>Negro et al</td>
<td>2011</td>
<td>Italy</td>
<td>Prospective</td>
<td>3593 pregnant women</td>
<td>Increased miscarriage</td>
</tr>
<tr>
<td>Nambahar et al</td>
<td>2011</td>
<td>India</td>
<td>Prospective</td>
<td>483 pregnant women</td>
<td>Increased miscarriage</td>
</tr>
<tr>
<td>Ashoor et al</td>
<td>2011</td>
<td>Europe</td>
<td>Prospective</td>
<td>4,420 singleton pregnancies</td>
<td>No increase spontaneous early preterm delivery</td>
</tr>
<tr>
<td>Karakosta et al</td>
<td>2012</td>
<td>Greece</td>
<td>Prospective</td>
<td>1170 pregnant women</td>
<td>Increased gestational diabetes and low birth weight neonates among those with of high TSH and spontaneous preterm among those without elevated TSH levels</td>
</tr>
</tbody>
</table>
Conclusion

Although it is well documented that overt hypothyroidism and overt hyperthyroidism have deleterious impacts on pregnancy and childhood outcomes, there is however no consensus on the potential impact of subclinical hypothyroidism and subclinical hyperthyroidism on maternal and fetal health. Furthermore there is debate on the association between miscarriage and preterm delivery in euthyroid women positive for TPO antibodies. As a result the universal screening of pregnant women has not been recommended yet, as the benefits of identification of those subclinical for of thyroid disturbances has not been proved. There is not adequate data on cost-benefit of treatment of pregnant women suffer from subclinical thyroid disorders. Studies are now focusing on these controversial issues to produce critically needed data on the impact of treating these subclinical forms of thyroid disease on the mother, fetus, and the future intellect of the unborn child. The present review article is limited by not including the non-English articles. Summarizing the studies which have been published, the following can be concluded: 1) Overt hyperthyroidism and hypothyroidism have several adverse effects on pregnancy outcomes, 2) The long term effect of overt hypothyroidism on cognitive function has been well documented, 3) There is debate on short and long term effect of subclinical hypothyroidism, 4) Thyroid antibody positivity is associated with adverse pregnancy outcomes, but there is no consensus on feto-maternal complication of pregnant women with TPO antibody positive and euthyroid status.

Future studies should include the following: 1) Studies of possible benefits of levo-T4 (L-T4) in euthyroid and subclinical hypothyroidism women with positive TPO antibody; 2) Larger randomized control trials of patients with maternal hypothyroidism are necessary to impact on neurocognitive function; 3) More comprehensive studies with controlled iodine intake checks (urinary tests, for example) are suggested.

Acknowledgment

There was no involvement of a pharmaceutical or any other company in funding of this manuscript. There is no one in charge of medical writing or editorial assistance with the preparation of this article.

Conflict of Interests

The authors report no declarations of interest.

References

3. The American Thyroid Association Taskforce on Thyroid Disease During Pregnancy and Postpartum. Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease during Pregnancy and Postpartum. Thyroid 2011; 21: 1081-1125.
17. Polak M, Le Gac I, Vuillard E, Guibourdenche J, Leger J, Toubert ME, et al. Fetal and neonatal...
32. Sahu MT, Das V, Mittal S, Agarwal A, Sahu M. Overt and subclinical thyroid dysfunction among Indian pregnant women and its effect on maternal and fetal outcome. *Arch Gynecol Obstet* 2010; 281: 215-220.
45. Stagnaro-Green A. Thyroid antibodies and miscarriage: where are we at a generation later? *J Thyroid Res* 2011; ID 841949.

