Volume 11, Issue 5 (7-2013)                   IJRM 2013, 11(5): 423-0 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Miresmaeili S M, Halvaei I, Fesahat F, Fallah A, Nikonahad N, Taherinejad M. Evaluating the role of silver nanoparticles on acrosomal reaction and spermatogenic cells in rat. IJRM. 2013; 11 (5) :423-0
URL: http://journals.ssu.ac.ir/ijrmnew/article-1-418-en.html
1- Yazd Academic Center of Education, Culture and Research Higher Education Institute, Yazd, Iran
2- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
3- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran , farzaneh.fesahat@gmail.com
4- Faculty of medicine, Tehran University of Medical Sciences, Tehran, Iran
Abstract:   (915 Views)
Background: Nanoparticles have wide range of application while there are some reports regarding their probable effects on male reproductive system and spermatozoa.
Objective:  The aim of this study was to evaluate the effect of different doses of silver nanoparticles (AgNPs) (70nm) on acrosome of rat spermatozoa and number of spermatogenic cells.
Materials and Methods:  In this experimental study, in experimental group, 32 male wistar rats (8 rats/group) received oral feeding AgNPs every 12 hr in one spermatogenesis period (48 days) by means of gavages in 25, 50 , 100 and 200 mg/kg concentration (experimental groups 1-4, respectively). The control group (8 rats) was treated on schedule with distilled water. Spermatozoa were stained by triple staining protocol for acrosome reaction. Histological evaluation on testis sections was performed using tissue processing and hematoxylin-eosin (H&E) staining.
Results:  There was significant difference between the control group and the experimental group 1 for acrosome reaction (11.00±0.00 and 24.25±3.68, respectively, p=0.01). There was only significant reduction in spermatogonia cells in experimental group 4. Experimental groups 2, 3 and 4 showed a significant reduction in the number of primary spermatocytes and spermatids as well as spermatozoa. But there were no significant differences between different groups for Sertoli cell number and seminiferous tubule diameter.
Conclusion:  It seems that Ag NPs have acute and significant effects on spermatogenesis and number of spermatogenic cells and also on acrosome reaction in sperm cells. More experimental investigations are necessary to elucidate better conclusion regarding the safety of nanoparticles on male reproduction system.
Full-Text [PDF 845 kb]   (167 Downloads) |   |   Full-Text (HTML)  (102 Views)  
Type of Study: Original Article |

References
1. Scampicchio M, Arecchi A, Mannino S. Optical nanoprobes based on gold nanoparticles for sugar sensing. Nanotechnology 2009; 20: 135501. [DOI:10.1088/0957-4484/20/13/135501]
2. Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 2010; 40: 328-346. [DOI:10.3109/10408440903453074]
3. Brooking J, Davis S, Illum L. Transport of nanoparticles across the rat nasal mucosa. J Drug Target 2001; 9: 267-279. [DOI:10.3109/10611860108997935]
4. Borm PJA, Kreyling W. Toxicological hazards of inhaled nanoparticles-potential implications for drug delivery. J Nanosci Nanotechnol 2004; 4: 521-531. [DOI:10.1166/jnn.2004.081]
5. Chen Y, Xue Z, Zheng D, Xia K, Zhao Y, Liu T, et al. Sodium chloride modified silica nanoparticles as a non-viral vector with a high efficiency of DNA transfer into cells. Curr Gene Ther 2003; 3: 273-279. [DOI:10.2174/1566523034578339]
6. Chen X, Schluesener H. Nanosilver: a nanoproduct in medical application. Toxicol Lett 2008; 176: 1-12. [DOI:10.1016/j.toxlet.2007.10.004]
7. Kalishwaralal K, Barathmanikanth S, Pandian SR, Deepak V, Gurunathan S. Silver nano-A trove for retinal therapies. J Control Release 2010; 145: 76-90. [DOI:10.1016/j.jconrel.2010.03.022]
8. Kumar A, Vemula PK, Ajayan PM, John G. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 2008; 7: 236-241. [DOI:10.1038/nmat2099]
9. Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, et al. Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol 2008; 20: 567-574. [DOI:10.1080/08958370701874671]
10. Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, et al. Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol 2010; 7: 20-31. [DOI:10.1186/1743-8977-7-20]
11. Dziendzikowska K, Gromadzka-Ostrowska J, Lankoff A, Oczkowski M, Krawczyńska A, Chwastowska J, et al. Time‐dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. J Appl Toxicol 2012; 32: 920-928. [DOI:10.1002/jat.2758]
12. Gromadzka-Ostrowska J, Dziendzikowska K, Lankoff A, Dobrzyńska M, Instanes C, Brunborg G, et al. Silver Nanoparticles Effects on Epididymal Sperm in Rats. Toxicol Lett 2012; 214: 251-258. [DOI:10.1016/j.toxlet.2012.08.028]
13. Pothuraju, R, Kaul G. Effect of Silver Nanoparticles on Functionalities of Buffalo (Bubalus Bubalis) Spermatozoa. Adv Sci Eng Med 2013; 5: 91-95. [DOI:10.1166/asem.2013.1238]
14. Talbot P, Chacon RS. A triple-stain technique for evaluating normal acrosome reactions of human sperm. J Exp Zool 1981; 215: 201-208. [DOI:10.1002/jez.1402150210]
15. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 2005; 88: 412-419. [DOI:10.1093/toxsci/kfi256]
16. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311: 622-627. [DOI:10.1126/science.1114397]
17. Yang YJ, Lee SY, Kim KY, Hong YP, Acute testis toxicity of bisphenol A diglycidyl ether in Sprague-Dawley rats. J Prev Med Public Health 2010; 43: 131-137. [DOI:10.3961/jpmph.2010.43.2.131]
18. Shafiab M, Bakht J, Razuddin B, Hayat Y, Zhang GP. Genotypic difference in the inhibition of photosynthesis and chlorophyll fluorescence by salinity and cadmium stresses in wheat. J Plant Nutr 2011; 34: 315-323. [DOI:10.1080/01904167.2011.536874]
19. Takeda K, Suzuki KI, Ishihara A, Kubo-Irie M, Fujimoto R, Tabata M, et al. Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J Health Sci 2009; 55: 95-102. [DOI:10.1248/jhs.55.95]
20. Braydich-Stolle LK, Lucas B, Schrand A, Murdock RC, Lee T, et al. Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicol Sci 2010; 116: 577-589. [DOI:10.1093/toxsci/kfq148]
21. Maekawa M, Toyama Y, Yasuda M, Yagi T, Yuasa S. Fyn tyrosine kinase in Sertoli cells is involved in mouse spermatogenesis. Biol Reprod 2002; 66: 211-221. [DOI:10.1095/biolreprod66.1.211]
22. Yoshida S, Hiyoshi K, Ichinose T, Takano H, Oshio S, et al. Effect of nanoparticles on the male reproductive system of mice. Int J Androl 2008; 32: 337-342. [DOI:10.1111/j.1365-2605.2007.00865.x]
23. Kobayashi N, Naya M, Hanai S, Nakanishi J. Reproductive and developmental toxicity studies of manufactured nanomaterials. Reprod Toxicol 2010; 30: 343-352. [DOI:10.1016/j.reprotox.2010.06.002]
24. Maekawa M, Toyama Y, Yasuda M, Yagi T, Yuasa S. Fyn tyrosine kinase in Sertoli cells is involved in mouse spermatogenesis. Biol Reprod 2002; 66: 211-221. [DOI:10.1095/biolreprod66.1.211]
25. Yoshida S, Hiyoshi K, Ichinose T, Takano H, Oshio S, et al. Effect of nanoparticles on the male reproductive system of mice. Int J Androl 2008; 32: 337-342. [DOI:10.1111/j.1365-2605.2007.00865.x]
26. Kobayashi N, Naya M, Hanai S, Nakanishi J. Reproductive and developmental toxicity studies of manufactured nanomaterials. Reprod Toxicol 2010; 30: 343-352. [DOI:10.1016/j.reprotox.2010.06.002]

Send email to the article author


© 2020 All Rights Reserved | International Journal of Reproductive BioMedicine

Designed & Developed by : Yektaweb