Volume 11, Issue 10 (12-2013)                   IJRM 2013, 11(10): 815-0 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bahmanpour S, Talaei Khozani T, Zarei fard N, Jaberipour M, Hosseini A, Esmaeilpour T. A comparison of the multiple oocyte maturation gene expression patterns between the newborn and adult mouse ovary. IJRM. 2013; 11 (10) :815-0
URL: http://journals.ssu.ac.ir/ijrmnew/article-1-355-en.html
1- Laboratory for Stem Cell Research, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran , bahmans@sums.ac.ir
2- Laboratory for Stem Cell Research, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
3- Institute Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
Abstract:   (558 Views)
Background: The interaction between follicular cells and oocyte leads to a change in gene expression involved in oocyte maturation processes.
Objective: The purpose of this study was to quantify the expression of more common genes involved in follicular growth and oocyte developmental competence.
Materials and Methods: In this experimental study, the expression of genes was evaluated with qRT-PCR assay in female BALB/c mice pups at 3-day of pre-pubertal and 8 week old virgin adult ovaries. The tissue was prepared by H&E staining for normal morphological appearance. The data were calculated with the 2-ΔCt formula and assessed using non-parametric two-tailed Mann-Whitney test. The p<0.05 was considered as significant.
Results: The data showed a significant increase in the level of Stra8 and GDF9 in adult compared with newborn mice ovaries (p=0.049). In contrast, a significant decrease in the level of Mvh, REC8, SCP1, SCP3, and ZP2 was observed in adult mice ovaries compared to those in the newborn mice ovaries (all p=0.049 except SCP1: p=0.046). There was no significant difference in the level of OCT4 and Cx37 expression between adult and newborn mice ovaries.
Conclusion: The modifications in gene expression patterns coordinate the follicular developmental processes. Furthermore, the findings showed higher expression level of premeiotic gene (Stra8) and lower level of meiotic entry markers (SCP1, SCP3, and REC8) in juvenile than newborn mouse ovaries.
Full-Text [PDF 654 kb]   (139 Downloads) |   |   Full-Text (HTML)  (86 Views)  
Type of Study: Original Article |

1. Gittens JE, Kidder GM. Differential contributions of connexin37 and connexin43 to oogenesis revealed in chimeric reaggregated mouse ovaries. J Cell Sci 2005; 118: 5071-5078. [DOI:10.1242/jcs.02624]
2. Veitch GI, Gittens JE, Shao Q, Laird DW, Kidder GM. Selective assembly of connexin37 into heterocellular gap junctions at the oocyte/granulosa cell interface. J Cell Sci 2004; 117: 2699-2707. [DOI:10.1242/jcs.01124]
3. Tsai MY, Lan KC, Huang KE, Huang FJ, Kung FT, Chang SY. Significance of mRNA levels of connexin37, connexin43, and connexin45 in luteinized granulosa cells of controlled hyperstimulated follicles. Fertil Steril 2003; 80: 1437-1443. [DOI:10.1016/j.fertnstert.2003.05.015]
4. Simon AM, Goodenough DA, Li E, Paul DL. Female infertility in mice lacking connexin 37. Nature 1997; 385: 525-529. [DOI:10.1038/385525a0]
5. Kouznetsova A, Novak I, Jessberger R, Hoog C. SYCP2 and SYCP3 are required for cohesin core integrity at diplotene but not for centromere cohesion at the first meiotic division. J Cell Sci 2005; 118: 2271-2278. [DOI:10.1242/jcs.02362]
6. Kang JS, Lee CJ, Lee JM, Rha JY, Song KW, Park MH. Follicular Expression of c-Kit/SCF and Inhibin- in Mouse Ovary During Development. J Histochem Cytochem 2003; 51: 1447-1458. [DOI:10.1177/002215540305101105]
7. Paredes A, Garcia-Rudaz C, Kerr B, Tapia V, Dissen GA, Costa ME, et al. Loss of synaptonemal complex protein-1, a synaptonemal complex protein, contributes to the initiation of follicular assembly in the developing rat ovary. Endocrinology 2005; 146: 5267-5277. [DOI:10.1210/en.2005-0965]
8. Ishiguro K, Kim J, Fujiyama-Nakamura S, Kato S, Watanabe Y. A new meiosis-specific cohesin complex implicated in the cohesin code for homologous pairing. EMBO Rep 2011; 12: 267-275. [DOI:10.1038/embor.2011.2]
9. Prieto I, Tease C, Pezzi N, Buesa JM, Ortega S, Kremer L, et al. Cohesin component dynamics during meiotic prophase I in mammalian oocytes. Chromosome Res 2004; 12: 197-213. [DOI:10.1023/B:CHRO.0000021945.83198.0e]
10. Revenkova E, Adelfalk C, Jessberger R. Cohesin in Oocytes-Tough Enough for Mammalian Meiosis? Genes 2010; 1: 495-504. [DOI:10.3390/genes1030495]
11. Liu L, Keefe DL. Defective cohesin is associated with age-dependent misaligned chromosomes in oocytes. Reprod Biomed Online 2008; 16: 103-112. [DOI:10.1016/S1472-6483(10)60562-7]
12. Pesce M, Wang X, Wolgemuth DJ, Scholer H. Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mech Dev 1998; 71: 89-98. [DOI:10.1016/S0925-4773(98)00002-1]
13. Varras M, Griva T, Kalles V, Akrivis C, Paparisteidis N. Markers of stem cells in human ovarian granulosa cells: is there a clinical significance in ART? J Ovarian Res 2012; 5: 36. [DOI:10.1186/1757-2215-5-36]
14. Toyooka Y, Tsunekawa N, Takahashi Y, Matsui Y, Satoh M, Noce T. Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech Dev 2000; 93: 139-149. [DOI:10.1016/S0925-4773(00)00283-5]
15. Mukherjee A, Reisdorph N, Guda C, Pandey S, Roy SK. Changes in ovarian protein expression during primordial follicle formation in the hamster. Mol Cell Endocrinol 2012; 348: 87-94. [DOI:10.1016/j.mce.2011.07.043]
16. Su YQ, Sugiura K, Wigglesworth K, O'Brien MJ, Affourtit JP, Pangas SA, et al. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development 2008; 135: 111-121. [DOI:10.1242/dev.009068]
17. Xie Y, Yu Y, Nie C, Cao Z. Mouse granulosa cells contribute more to the mRNA synthesis of mZP2 than oocyte does. Cell Biochem Funct 2010; 28: 661-667. [DOI:10.1002/cbf.1704]
18. Liang LF, Chamow SM, Dean J. Oocyte-specific expression of mouse Zp-2: developmental regulation of the zona pellucida genes. Mol Cell Biol 1990; 10: 1507-1515. [DOI:10.1128/MCB.10.4.1507]
19. Epifano O, Liang LF, Familari M, Moos MC Jr, Dean J. Coordinate expression of the three zona pellucida genes during mouse oogenesis. Development 1995; 121: 1947-1956.
20. Choi Y, Qin Y, Berger MF, Ballow DJ, Bulyk ML, Rajkovic A. Microarray analyses of newborn mouse ovaries lacking Nobox. Biol Reprod 2007; 77: 312-319. [DOI:10.1095/biolreprod.107.060459]
21. Niikura Y, Niikura T, Wang N, Satirapod C, Tilly JL. Systemic signals in aged males exert potent rejuvenating effects on the ovarian follicle reserve in mammalian females. Aging 2010; 2: 999-1003. [DOI:10.18632/aging.100255]
22. Niikura Y, Niikura T, Tilly JL. Aged mouse ovaries possess rare premeiotic germ cells that can generate oocytes following transplantation into a young host environment. Aging 2009; 1: 971-978. [DOI:10.18632/aging.100105]
23. Wang N, Tilly JL. Epigenetic status determines germ cell meiotic commitment in embryonic and postnatal mammalian gonads. Cell Cycle 2010; 9: 339-349. [DOI:10.4161/cc.9.2.10447]
24. Tilly JL, Telfer EE. Purification of germline stem cells from adult mammalian ovaries: a step closer towards control of the female biological clock? Mol Hum Reprod 2009; 15: 393-398. [DOI:10.1093/molehr/gap036]
25. Dyce PW, Liu J, Tayade C, Kidder GM, Betts DH, Li J. In vitro and in vivo germ line potential of stem cells derived from newborn mouse skin. PloS one 2011; 6: e20339. [DOI:10.1371/journal.pone.0020339]
26. Nicholas CR, Haston KM, Grewall AK, Longacre TA, Reijo Pera RA. Transplantation directs oocyte maturation from embryonic stem cells and provides a therapeutic strategy for female infertility. Hum Mol Genet 2009; 18: 4376-4389. [DOI:10.1093/hmg/ddp393]
27. Qing T, Shi Y, Qin H, Ye X, Wei W, Liu H, et al. Induction of oocyte-like cells from mouse embryonic stem cells by co-culture with ovarian granulosa cells. Differentiation 2007; 75: 902-911. [DOI:10.1111/j.1432-0436.2007.00181.x]
28. Danner S, Kajahn J, Geismann C, Klink E, Kruse C. Derivation of oocyte-like cells from a clonal pancreatic stem cell line. Mol Hum Reprod 2007; 13: 11-20. [DOI:10.1093/molehr/gal096]
29. Virant-Klun I, Skutella T. Stem cells in aged mammalian ovaries. Aging 2010; 2: 3-6. [DOI:10.18632/aging.100117]
30. Gougeon A, Notarianni E. There is no neo-oogenesis in the adult mammalian ovary. J Turkish-German Gynecol Assoc 2011; 12: 270-273. [DOI:10.5152/jtgga.2011.63]
31. Zhang P, Lv LX, Xing WJ. Early meiotic-specific protein expression in post-natal rat ovaries. Reprod Domest Anim 2010; 45: 447-453. [DOI:10.1111/j.1439-0531.2010.01599.x]
32. Jones KT. Meiosis in oocytes: predisposition to aneuploidy and its increased incidence with age. Hum Reprod Update 2008; 14: 143-158. [DOI:10.1093/humupd/dmm043]
33. Hodges CA, LeMaire-Adkins R, Hunt PA. Coordinating the segregation of sister chromatids during the first meiotic division: evidence for sexual dimorphism. J Cell Sci 2001; 114: 2417-2426.
34. Yuan L, Liu JG, Hoja MR, Wilbertz J, Nordqvist K, Hoog C. Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science 2002; 296: 1115-1118. [DOI:10.1126/science.1070594]
35. Garcia-Cruz R, Brieno MA, Roig I, Grossmann M, Velilla E, Pujol A, et al. Dynamics of cohesin proteins REC8, STAG3, SMC1 beta and SMC3 are consistent with a role in sister chromatid cohesion during meiosis in human oocytes. Hum Reprod 2010; 25: 2316-2327. [DOI:10.1093/humrep/deq180]
36. Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 2004; 428: 145-150. [DOI:10.1038/nature02316]
37. Millar SE, Lader ES, Dean J. ZAP-1 DNA binding activity is first detected at the onset of zona pellucida gene expression in embryonic mouse oocytes. Dev Biol 1993; 158: 410-413. [DOI:10.1006/dbio.1993.1199]

Send email to the article author

© 2020 All Rights Reserved | International Journal of Reproductive BioMedicine

Designed & Developed by : Yektaweb