Volume 6, Issue 5 (7-2008)                   IJRM 2008, 6(5): 187-0 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Haidari K, Salehnia M, Rezazadeh Valojerdi M, Pourbyranvand S. Ultrastructural study of isolated mouse preantral follicles co-cultured with cumulus cells with leukemia inhibitory factor. IJRM. 2008; 6 (5) :187-0
URL: http://journals.ssu.ac.ir/ijrmnew/article-1-130-en.html
1- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
2- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran , mogdeh@dr.com
Abstract:   (938 Views)
Background: The ultrastructural analysis of cultured follicles could direct us to understand subcellular changes during in vitro culture.
Objective: This study was done to verify the ultrastructural characteristics of in vitro cultured mouse isolated preantral follicles in co-culture system in the presence and absence of leukemia inhibitory factor (LIF)
Materials and Methods: Mechanically isolated preantral follicles were divided into four groups: control without LIF, control with LIF, co-cultured group with LIF, co-cultured group without LIF. In co-culture groups the follicles were cultured with cumulus cells. After 4 days the follicles were processed and sectioned for transmission electron microscopic examination.
Results: The oocytes of cultured preantral follicles in all studied groups demonstrated a homogeneous cytoplasm and they had the round or ovoid shaped mitochondria with light matrix and cristae. Their endoplasmic reticulum cisternae were in association with mitochondria and Golgi complex. The cortical granules and the aggregation of mitochondria around the germinal vesicle were prominent in both co-cultured groups. The organelle distribution in granulosa cells was normal in all groups of study and no sign of cell death was observed. In both co-cultured systems the granulosa cells contained mitochondria with tubular cristae, a well developed smooth endoplasmic reticulum and several large lipid droplets, characteristics of steroid synthesis cells. Conclusion: The oocyte and granulosa cells in co-cultured system showed more remarkable maturation features than that of control.
Full-Text [PDF 314 kb]   (104 Downloads) |   |   Full-Text (HTML)  (112 Views)  
Type of Study: Original Article |

1. Adam AA, Takahashi Y, Katagiri S, Nagano M. In vitro culture of mouse preantral follicles using membrane inserts and developmental competence of in vitro ovulated oocytes. J Reprod Dev 2004; 50:579-586. [DOI:10.1262/jrd.50.579]
2. Bishonga C, Takashi Y, Katagiri S, Nagano M, Ishikawa A. In vitro growth of ovarian peantral follicles and the capacity of their oocytes to develop to the blastocyst stage. J Vet Med Sci 2001; 63:619-624. [DOI:10.1292/jvms.63.619]
3. Cortvrindt R, Smitz J. Early preantral mouse follicle in vitro maturation: oocytes growth, meiotic maturation and granulose-cell proliferation. Theriogenology 1998; 49:845-859. [DOI:10.1016/S0093-691X(98)00034-X]
4. Yamanaka K, Aono N, Yoshida H, Sato E. Cryopreservation and in vitro maturation of germinal vesicle stage oocytes of animals for application in assisted reproductive technology. Reprod Med Biol 2007; 6:61-68. [DOI:10.1111/j.1447-0578.2007.00167.x]
5. Hasegawa A, Koyama K. In vitro growth and maturation of mouse oocyte-granulosa cell complex from cryopreserved ovaries and achievement of pup birth. Reprod Med Biol 2007; 6:77-83. [DOI:10.1111/j.1447-0578.2007.00169.x]
6. Cecconi S, Rossi G, Palmerini MG. Mouse oocyte differentiation during antral follicle development. Microsc Res Tech 2006; 69:408-414. [DOI:10.1002/jemt.20300]
7. Boland NI, Gosden RG. Effects of epidermal growth factor on the growth and differentiation of cultured mouse ovarian follicles. J Reprod Fertil 1994; 101:369-374. [DOI:10.1530/jrf.0.1010369]
8. Demeestere I, Gervy C, Centner J, Devreker F, Englert Y, Delbaere A. Effect of insulin-like growth factor-I during preantral follicular culture on steroidogenesis, in vitro oocyte maturation, and embryo development in mice. Biol Reprod 2004; 70:1664-1669. [DOI:10.1095/biolreprod.103.023317]
9. Demeestere I, Centner J, Gervy C, Englert Y, Delbaere A. Impact of various endocrine and paracrine factors on in vitro culture of preantral follicles in rodents. Reproduction 2005; 130:147-156. [DOI:10.1530/rep.1.00648]
10. Skinner MK. Regulation of primordial follicle assembly and development. Hum Reprod Update 2005; 1:461-471. [DOI:10.1093/humupd/dmi020]
11. Hilton DJ, Gough NM. Leukemia inhibitory factor: a biological perspective. J Cell Biochem 1991; 46:21-26. [DOI:10.1002/jcb.240460105]
12. Senturk LM, Arici A. Leukemia inhibitory factor in human reproduction. Am J Reprod Immunol 1998; 39:144- 151. [DOI:10.1111/j.1600-0897.1998.tb00346.x]
13. Tsai HD, Chang CC, Hsieh YY, Hsu LW, Chang SC, Lo HY. Effect of different concentrations of recombinant leukemia inhibitory factor (LIF) on different developmental stage of mouse embryo in vitro. J Assist Reprod Genet 2000; 17:352-355. [DOI:10.1023/A:1009413329977]
14. Ptak G, Lopes F, Matsukawa K, Tischner M, Loi P. Leukaemia inhibitory factor enhances sheep fertilization in vitro via an influence on the oocyte. Theriogenology 2006; 65:1891-1899. [DOI:10.1016/j.theriogenology.2005.10.018]
15. Morita Y, Manganaro TF, Tao XJ, Martimbeau S, Donahoe PK, Tilly JL. Requirement for phosphatidylinositol-3'-kinase in cytokine-mediated germ cell survival during fetal oogenesis in the mouse. Endocrinol 1999; 140: 941-949. [DOI:10.1210/endo.140.2.6539]
16. Gearing DP, Thut CJ, Van de Bos T, Gimpel SD, Delaney PB, King J, et al. leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer, gp 130. EMBO J 1991; 6: 2839-2848. [DOI:10.1002/j.1460-2075.1991.tb07833.x]
17. van Eijk MJ, Mandelbaum J, Salat-Baroux J, Belaisch-Allart J, Plachot M, Junca AM, et al. Expression of leukaemia inhibitory factor receptor subunits LIFR beta and gp130 in human oocytes and preimplantation embryos. Mol Hum Reprod 1996; 2:355-360. [DOI:10.1093/molehr/2.5.355]
18. Nicholas J, Davidson D, Taga T, Yoshida K, Chambers I, Smith A. Complementary tissue specific expression of LIF and LIF receptor mRNA in early mouse embryogenesis. Mech Dev 1996; 57: 123-131. [DOI:10.1016/0925-4773(96)00531-X]
19. Sirisathien S, Hernandez-Fonseca HJ, Bosch P, Hollet BR, Lott JD, Brackett BG. Effect of leukemia inhibitory factor on bovine embryos produced in vitro under chemically defined conditions. Theriogenology 2003; 59: 1751-1763. [DOI:10.1016/S0093-691X(02)01258-X]
20. Nilsson EE, Kezele P, Skinner MK. Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol Cell Endocrinol 2002; 188: 65-73. [DOI:10.1016/S0303-7207(01)00746-8]
21. Haidari K, Salehnia M, Rezazadeh Valojerdi M. The effects of different concentrations of leukemia inhibitory factor on development of isolated preantral follicles from fresh and vitrified ovaries. Iranian Biomed J 2006; 10: 185-190.
22. Haidari K, Salehnia M, Rezazadeh Valojerdi M. The effect of Leukemia inhibitory factor and co-culture on the in vitro maturation and ultrastructure of vitrified and non vitrified isolated mouse preantral follicles. Fertil Steril 2008; 90: 2389-2397. [DOI:10.1016/j.fertnstert.2007.10.052]
23. Mazoochi T, Salehnia M, Rezazadeh Valojerdi M, Mowla SJ. Morphologic, ultrastructural, and biochemical identification of apoptosis in vitrified-warmed mouse ovarian tissue. Fertil Steril 2008; 90: 1480-1486. [DOI:10.1016/j.fertnstert.2007.07.1384]
24. Quinn P, Margalit R. Beneficial effects of coculture with cumulus cells on blastocyst formation in a prospective trial with supernumerary human embryos. J Assist Reprod Genet 1996; 13: 9-14. [DOI:10.1007/BF02068862]
25. Kohata Y, Gupta PD, Yasuzumi F. Stereo-electron microscopy of the ovarian follicles of cat and mouse. Okajimas Folia Anat Jpn 2007; 83: 97-106. [DOI:10.2535/ofaj.83.97]
26. Makabe S, Naguro T, Stallone T. Oocyte-follicle cell interactions during ovarian follicle development, as seen by high resolution scanning and transmission electron microscopy in humans. Micros Res Tech 2006; 69: 436-449. [DOI:10.1002/jemt.20303]
27. Nishi Y, Takeshita T, Sato K, Araki T. Change of the mitochondrial distribution in mouse ooplasm during in vitro maturation. J Nippon Med Sch 2003; 70: 408-415. [DOI:10.1272/jnms.70.408]
28. Nilsson E, Parrott JA, Skinner MK. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Mol Cell Endocrinol 2001; 175: 123-130. [DOI:10.1016/S0303-7207(01)00391-4]
29. Santos RR, Rodrigues PR, Costa SHF, Silva JRV, Matos MHT, Lucci CM, et al. Histological and ultrastructural analysis of cryopreserved sheep preantral follicles. Anim Reprod Sci 2006; 91: 246-263. [DOI:10.1016/j.anireprosci.2005.04.013]
30. Silva JR, Bao SN, Lucci CM, Carvalho FC, Andrade ER, Ferreira MA, et al. Morphological and ultrastructural changes occurring during degeneration of goat preantral follicles preserved in vitro. Anim Reprod Sci 2001; 66: 209-223. [DOI:10.1016/S0378-4320(01)00102-6]
31. Wassarman PM, Josefowicz WJ. Oocyte development in the mouse: an ultrastructural comparison of oocytes isolated at various stage of growth and meiotic competence. J Morphol 1978; 156: 209-235. [DOI:10.1002/jmor.1051560206]
32. Motta PM, Nottola SA, Makabe S, Heyn R. Mitochondrial morphology in human fetal and adult female germ cell. Hum Reprod 2000; 15: 129-147. [DOI:10.1093/humrep/15.suppl_2.129]
33. Kacinskis MA, Lucci CM, Luque MCA, Bao SN. Morphometric and ultrastructural characterization of Bos indicus preantral follicles. Anim Reprod Sci 2005; 87: 45-57. [DOI:10.1016/j.anireprosci.2004.09.003]
34. Niimura S, Kawakami S, Takano H. Changes in the amount of cytoplasmic inclusions in mouse oocytes during meiotic maturation in vivo and in vitro. Reprod Med Biol 2004; 3: 231-236. [DOI:10.1111/j.1447-0578.2004.00075.x]
35. Valojerdi MR, Salehnia M. Developmental potential and ultrastructural injuries of metaphase II (MII) mouse oocytes after slow freezing or vitrification. J Assist Reprod Genet 2005; 22: 119-127. [DOI:10.1007/s10815-005-4876-8]
36. Nottola SA, Heyn R, Camboni A, Correr S, Macchiarelli G. Ultrastructural characteristics of human granulosa cells in a coculture system for in vitro fertilization. Microsc Res Tech 2006; 69: 508-516. [DOI:10.1002/jemt.20309]

Send email to the article author

© 2021 All Rights Reserved | International Journal of Reproductive BioMedicine

Designed & Developed by : Yektaweb