Volume 16, Issue 8 (August 2018)                   IJRM 2018, 16(8): 497-500 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gonzalez-Añover P, Torres-Rovira L, García-Contreras C, Vazquez-Gomez M, Pesantez J L, Sanz-Fernandez M V, et al . Antioxidant homeostasis is disturbed in fetuses with leptin-resistant genotypes: A cross-sectional study. IJRM. 2018; 16 (8) :497-500
URL: http://journals.ssu.ac.ir/ijrmnew/article-1-1176-en.html
1- Faculty of Veterinary Sciences, UCM, Madrid, Spain
2- Comparative Physiology Group, SGIT-INIA, Madrid, Spain
3- School of Veterinary Medicine and Zootechnics, Faculty of Agricultural Sciences, University of Cuenca, Cuenca, Ecuador
4- Comparative Physiology Group, SGIT-INIA, Madrid, Spain , bulnes@inia.es
Abstract:   (295 Views)
Background: Leptin resistance is associated with lower reproductive efficiency, with deficiencies in embryo viability and growth leading to low prolificacy and high incidence of intrauterine growth restriction.
Objective: We aimed to investigate the underlying mechanisms of the leptin-resistance, evaluating the antioxidant homeostasis of leptin-resistant and lean swine fetuses.
Materials and Methods: The study included 70 plasma samples from fetuses at day 62 of gestation (mid-pregnancy), from breeds with (Iberian breed; n=35) and without leptin resistance (25% Large White x 25% Landrace x 50% Pietrain; n=35). The antioxidant status of the plasma samples was determined by photoinduced chemiluminescence whilst systemic oxidative stress was assessed determining plasma hydrogen peroxide concentration by enzimoimmunoassay.
Results: Plasma total antioxidant capacity was significantly lower in leptin-resistant fetuses (p=0.003), whilst systemic oxidative stress was increased (p=0.02).
Conclusion: Our results indicate key differences in the antioxidant status in pregnancies affected by leptin resistance
Full-Text [PDF 213 kb]   (82 Downloads) |   |   Full-Text (HTML)  (21 Views)  
Type of Study: Original Article |
Received: 2018/08/27 | Accepted: 2018/08/27 | Published: 2018/08/27

1. Metwally M, Ledger WL, Li TC. Reproductive endocrinology and clinical aspects of obesity in women. Ann N Y Acad Sci 2008; 1127: 140-146. [DOI:10.1196/annals.1434.000]
2. Brewer CJ, Balen AH. The adverse effects of obesity on conception and implantation. Reproduction 2010; 140: 347-364. [DOI:10.1530/REP-09-0568]
3. Gluckman PD, Hanson MA. Living with the past: evolution, development, and patterns of disease. Science 2004; 305: 1733-1736. [DOI:10.1126/science.1095292]
4. Spurlock ME, Gabler NK. The development of porcine models of obesity and the metabolic syndrome. J Nutr 2008; 138: 397-402. [DOI:10.1093/jn/138.2.397]
5. Torres-Rovira L, Astiz S, Caro A, Lopez-Bote C, Ovilo C, Pallares P, et al. Diet-induced swine model with obesity/leptin resistance for the study of metabolic syndrome and type 2 diabetes. Sci World J 2012; 2012: 510149. [DOI:10.1100/2012/510149]
6. Torres-Rovira L, Gonzalez-A-over P, Astiz S, Caro A, Lopez-Bote C, Ovilo C, et al. Effect of an obesogenic diet during the juvenile period on growth pattern, fatness and metabolic, cardiovascular and reproductive features of swine with obesity/leptin resistance. Endocr Metab Immun Disord Drug Targets 2013; 13: 143-151. [DOI:10.2174/1871530311313020002]
7. Ovilo C, Fernández A, Noguera JL, Barragán C, Letón R, Rodríguez C, et al. Fine mapping of porcine chromosome 6 QTL and LEPR effects on body composition in multiple generations of an Iberian by Landrace intercross. Genet Res 2005; 85: 57-67. [DOI:10.1017/S0016672305007330]
8. Gonzalez-A-over P, Encinas T, Torres-Rovira L, Pallares P, Mu-oz-Frutos J, Gomez-Izquierdo E, et al. Ovulation rate, embryo mortality and intrauterine growth retardation in obese swine with gene polymorphisms for leptin and melanocortin receptors. Theriogenology 2011; 75: 34-41. [DOI:10.1016/j.theriogenology.2010.07.009]
9. Torres-Rovira L, Tarrade A, Astiz S, Mourier E, Perez-Solana M, de la Cruz P, et al. Sex and breed-dependent organ development and metabolic responses in foetuses from lean and obese/leptin resistant swine. PLoS One 2013; 8: e66728. [DOI:10.1371/journal.pone.0066728]
10. Barbero A, Astiz S, Lopez-Bote CJ, Perez-Solana ML, Ayuso M, Garcia-Real I, et al. Maternal malnutrition and offspring sex determine juvenile obesity and metabolic disorders in a swine model of leptin resistance. PLoS One 2013; 8: e78424. [DOI:10.1371/journal.pone.0078424]
11. Malti, N, Merzouk H, Merzouk SA, Loukidi B, Karaouzene N, Malti A, et al. Oxidative stress and maternal obesity: feto-placental unit interaction. Placenta 2014; 35: 411-416. [DOI:10.1016/j.placenta.2014.03.010]
12. Sen S, Iyer C, Meydani SN. Obesity during pregnancy alters maternal oxidant balance and micronutrient status. J Perinatol 2014; 34: 105-111. [DOI:10.1038/jp.2013.153]
13. Walsh Hentges LS, Martin RJ. Influence of genetic obesity on maternal and fetal serum and lipoprotein lipids in swine. Int J Obes 1988; 12: 49-57.
14. Alfer J, Muller-Schottle F, Classen-Linke I, von Rango U, Happel L, Beier-Hellwig K, et al. The endometrium as a novel target for leptin: differences in fertility and subfertility. Mol Hum Reprod 2000; 6: 595-601. [DOI:10.1093/molehr/6.7.595]
15. Gonzalez RR, Caballero-Campo P, Jasper M, Mercader A, Devoto L, Pellicer A, et al. Leptin and leptin receptor are expressed in the human endometrium and endometrial leptin secretion is regulated by the human blastocyst. J Clin Endocrinol Metab 2000; 85: 4883-4888. [DOI:10.1210/jc.85.12.4883]
16. Duggal PS, Weitsman SR, Magoffin DA, Norman RJ. Expression of the long (OB-RB) and short (OB-RA) forms of the leptin receptor throughout the oestrous cycle in the mature rat ovary. Reproduction 2002; 123: 899-905. [DOI:10.1530/rep.0.1230899]
17. Mitchell M, Armstrong DT, Robker RL, Norman DJ. Adipokines: implications for female fertility and obesity. Reproduction 2005; 130: 583-597. [DOI:10.1530/rep.1.00521]
18. Yoon SJ, Chaa KY, Lee KA. Leptin receptors are down-regulated in uterine implantation sites compared to interimplantation sites. Mol Cell Endocrinol 2005; 232: 27-35. [DOI:10.1016/j.mce.2005.01.002]
19. Nakatsukasa H, Masuyama H, Takamoto N, Hiramatsu Y. Circulating leptin and angiogenic factors in preeclampsia patients. Endocr J 2008; 55: 565-573. [DOI:10.1507/endocrj.K07E-136]
20. Parraguez VH, Atlagich M, Araneda O, García C, Mu-oz A, De los Reyes M, et al. Effects of antioxidant vitamins on newborn and placental traits in gestations at high altitude: comparative study in high and low altitude native sheep. Reprod Fertil Dev 2011, 23: 285-296. [DOI:10.1071/RD10016]
21. Gupta P, Narang M, Banerjee BD, Basu S. Oxidative stress in term small for gestational age neonates born to undernourished mothers: A case control study. BMC Pediatr 2004; 4: 14-20. [DOI:10.1186/1471-2431-4-14]
22. Kamath U, Rao G, Kamath SU, Rai L. Maternal and fetal indicators of oxidative stress during intrauterine growth retardation (IUGR). Indian J Clin Biochem 2006; 21: 111-115. [DOI:10.1007/BF02913077]
23. Jones ML, Mark PJ, Waddell BJ. Maternal dietary omega-3 fatty acids and placental function. Reproduction 2014; 147: R143-152. [DOI:10.1530/REP-13-0376]
24. Biri A, Bozkurt N, Turp A, Kavutcu M, Himmetoglu O, Durak I. Role of oxidative stress in intrauterine growth restriction. Gynecol Obstet Invest 2007; 64: 187-192. [DOI:10.1159/000106488]
25. Herrera E, Ortega-Senovilla H. Lipid metabolism during pregnancy and its implications for fetal growth. Curr Pharm Biotechnol 2014; 15: 24-31. [DOI:10.2174/1389201015666140330192345]
26. Bobiński R, Mikulska M. The ins and outs of maternal-fetal fatty acid metabolism. Acta Biochim Pol 2015; 62: 499-507. [DOI:10.18388/abp.2015_1067]
27. Sebert S, Sharkey D, Budge H, Symonds ME. The early programming of metabolic health: is epigenetic setting the missing link? Am J Clin Nutr 2011; 94: 1953S-1958S. [DOI:10.3945/ajcn.110.001040]
28. Gonzalez-Bulnes A, Pallares P, Ovilo C. Ovulation, implantation and placentation in females with obesity and metabolic disorders: life in the balance. Endocr Metab Immune Disord Drug Targets 2011; 11: 285-301. [DOI:10.2174/187153011797881193]
29. Myatt L. Placental adaptive responses and fetal programming. J Physiol 2006; 572: 25-30. [DOI:10.1113/jphysiol.2006.104968]
30. Garcia-Contreras C, Vazquez-Gomez M, Astiz S, Torres-Rovira L, Sanchez-Sanchez R, Gomez-Fidalgo E, et al. Ontogeny of sex-related differences in foetal developmental features, lipid availability and fatty acid composition. Int J Mol Sci 2017; 18: 1171-1192. [DOI:10.3390/ijms18061171]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2019 All Rights Reserved | International Journal of Reproductive BioMedicine

Designed & Developed by : Yektaweb