Volume 16, Issue 6 (Jun 2018)                   IJRM 2018, 16(6): 397-404 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Karimipour M, Zirak Javanmard M, Ahmadi A, Jafari A. Oral administration of titanium dioxide nanoparticle through ovarian tissue alterations impairs mice embryonic development. IJRM. 2018; 16 (6) :397-404
URL: http://journals.ssu.ac.ir/ijrmnew/article-1-1135-en.html
1- Department of Anatomy and Histology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
2- Department of Anatomy and Histology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran. , ms_zirak@yahoo.com
3- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
4- Department of Occupational Health, School of Health, Urmia University of Medical Sciences, Urmia, Iran
Abstract:   (262 Views)
Background: Titanium dioxide nanoparticle (TiO2NP) is commonly used in industrial products including food colorant, cosmetics, and drugs. Previous studies have shown that oral administration of TiO2NP can be toxic to the reproductive system, but little is known if TiO2NP could be able to affect the functions of the female reproductive system, in particular fertility.
Objective: The objective was to evaluate the effects of oral administration of TiO2NP on histological changes in ovaries, pregnancy rate and in vitro fertility in mice.
Materials and Methods: In this experimental study, 54 adult female NMRI mice were randomly assigned to two groups: control group (received vehicle orally) and TiO2NP group (received 100 mg/kg/daily TiO2NP solution orally). After 5 wk, pregnancy and in vitro fertilization rates, histological changes in ovaries, malondyaldehyde and estrogen hormone levels in the blood serum were investigated and compared between groups.
Results: Our results revealed that TiO2NP administration induced histological alterations in ovary including, degenerating and reduction of ovarian follicles, ovarian cyst formation and disturbance of follicular development. Compared to control, animals in TiO2NP group have shown significant reduction of pregnancy rates and number of giving birth (p=0.04). TiO2NP caused significant reduction in oocyte number, fertilization rate, and pre-implantation embryo development (p<0.001). Furthermore, malondyaldehyde and estrogen hormone levels were significantly (p<0.01) increased in mice received TiO2NP.
Conclusion: Our findings suggest that TiO2NP exposure induces alterations on mice ovary resulting in a decrease in the rate of embryo development and fertility.
Full-Text [PDF 641 kb]   (155 Downloads) |   |   Full-Text (HTML)  (13 Views)  
Type of Study: Original Article |
Received: 2018/07/23 | Accepted: 2018/07/23 | Published: 2018/07/23

References
1. Win-Shwe TT, Fujimaki H. Nanoparticles and neurotoxicity. Int J Mol Sci 2011; 12: 6267-6280. [DOI:10.3390/ijms12096267]
2. Vandebriel RJ, Vermeulen JP, van Engelen LB, de Jong B, Verhagen LM, de la Fonteyne-Blankestijn LJ, et al. The crystal structure of titanium dioxide nanoparticles influences immune activity in vitro and in vivo. Part Fibre Toxicol 2018; 15: 1-12. [DOI:10.1186/s12989-018-0245-5]
3. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C, et al. Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 2009; 53: 52-62. [DOI:10.1016/j.yrtph.2008.10.008]
4. Oberdörster G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Int Med 2010; 267: 89-105. [DOI:10.1111/j.1365-2796.2009.02187.x]
5. Brun E, Barreau F, Veronesi G, Fayard B, Sorieul S, Chanéac C, et al. Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Part Fib Toxicol 2014; 11: 1-16. [DOI:10.1186/1743-8977-11-13]
6. Zhang L, Xie X, Zhou Y, Yu D, Deng Y, Ouyang J, et al. Gestational exposure to titanium dioxide nanoparticles impairs the placentation through dysregulation of vascularization, proliferation and apoptosis in mice. Int J Nanomedicine 2018: 13: 777-789. [DOI:10.2147/IJN.S152400]
7. Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 2012: 46: 2242-2250. [DOI:10.1021/es204168d]
8. Kaida T, Kobayashi K, Adachi M, Suzuki F. Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics. J Cosmet Sci 2004; 55: 219-220.
9. Dorier M, Brun E, Veronesi G, Barreau F, Pernet-Gallay K, Desvergne C, et al. Impact of anatase and rutile titanium dioxide nanoparticles on uptake carriers and efflux pumps in Caco-2 gut epithelial cells. Nanoscale 2015; 7: 7352-7360. [DOI:10.1039/C5NR00505A]
10. Tassinari R, Cubadda F, Moracci G, Aureli F, D'Amato M, Valeri M, et al. Oral, short-term exposure to titanium dioxide nanoparticles in Sprague-Dawley rat: focus on reproductive and endocrine systems and spleen. Nanotoxicology 2014; 8: 654-662. [DOI:10.3109/17435390.2013.822114]
11. Jia X, Wang S, Zhou L, Sun L. The potential liver, brain, and embryo toxicity of titanium dioxide nanoparticles on mice. Nanoscale Res Lett 2017; 12: 478. [DOI:10.1186/s11671-017-2242-2]
12. Jafari A, Rasmi Y, Hajaghazadeh M, Karimipour M. Hepatoprotective effect of thymol against subchronic toxicity of titanium dioxide nanoparticles: Biochemical and histological evidences. Environ Toxicol Pharmacol 2018; 58: 29-36. [DOI:10.1016/j.etap.2017.12.010]
13. Zhao X, Ze Y, Gao G, Sang X, Li B, Gui S, et al. Nanosized TiO2-induced reproductive system dysfunction and its mechanism in female mice. PLoS One 2013; 8: e59378. [DOI:10.1371/journal.pone.0059378]
14. Hu H, Guo Q, Wang C, Ma X, He H, Oh Y, et al. Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species-induced insulin resistance in mice. J Appl Toxicol 2015; 35: 1122-1132. [DOI:10.1002/jat.3150]
15. Hu H, Li L, Guo Q, Zong H, Yan Y, Yin Y, et al. RNA sequencing analysis shows that titanium dioxide nanoparticles induce endoplasmic reticulum stress, which has a central role in mediating plasma glucose in mice. Nanotoxicology 2018; 12: 341-356. [DOI:10.1080/17435390.2018.1446560]
16. Gui S, Zhang Z, Zheng L, Cui Y, Liu X, Li N, et al. Molecular mechanism of kidney injury of mice caused by exposure to titanium dioxide nanoparticles. J Hazard Mater 2011; 195: 365-370. [DOI:10.1016/j.jhazmat.2011.08.055]
17. Gao G, Ze Y, Li B, Zhao X, Zhang T, Sheng L, et al. Ovarian dysfunction and gene-expressed characteristics of female mice caused by long-term exposure to titanium dioxide nanoparticles. J Hazard Mater 2012; 243:19-27. [DOI:10.1016/j.jhazmat.2012.08.049]
18. Khorsandi L, Orazizadeh M, Moradi-Gharibvand N, Hemadi M, Mansouri E. Beneficial effects of quercetin on titanium dioxide nanoparticles induced spermatogenesis defects in mice. Environ Sci Pollut Res Int 2017; 24: 5595-5606. [DOI:10.1007/s11356-016-8325-2]
19. Hong F, Zhao X, Si W, Ze Y, Wang L, Zhou Y, et al. Decreased spermatogenesis led to alterations of testis-specific gene expression in male mice following nano-TiO2 exposure. J Hazard Mater 2015; 300: 718-728. [DOI:10.1016/j.jhazmat.2015.08.010]
20. Juan H, XuYing W, Fei W, GuiFeng X, Zhen L, TianBao Z. Effects of titanium dioxide nanoparticles on development and maturation of rat preantral follicle in vitro. Acad J Sec Mil Med Univ 2009; 30: 869-873.
21. Di Virgilio AL, Reigosa M, Arnal PM, Fernández Lorenzo de Mele M. Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells. J Hazard Mater 2010; 177: 711-718. [DOI:10.1016/j.jhazmat.2009.12.089]
22. Hong F, Zhou Y, Zhao X, Sheng L, Wang L. Maternal exposure to nanosized titanium dioxide suppresses embryonic development in mice. Int J Nanomedicine 2017; 12: 6197-6204. [DOI:10.2147/IJN.S143598]
23. Thum C, McNabb WC, Young W, Cookson AL, Roy NC. Prenatal caprine milk oligosaccharide consumption affects the development of mice offspring. Mol Nutr Food Res 2016; 60: 2076-2085. [DOI:10.1002/mnfr.201600118]
24. Ahmadi A, Bamohabat Chafjiri S, Sadrkhanlou RA. Effect of satureja khuzestanica essential oil against fertility disorders induced by busulfan in female mice. Vet Res Forum 2017; 8: 281-286.
25. Graham JD, Clarke CL. Physiological action of progesterone in target tissues. Endocr Rev 1997; 18: 502-519. [DOI:10.1210/er.18.4.502]
26. Iwamasa J, Shibata S, Tanaka N, Matsuura K, Okamura H. The relationship between ovarian progesterone and proteolytic enzyme activity during ovulation in the gonadotropin-treated immature rat. Biol Reprod 1992; 46: 309-313. [DOI:10.1095/biolreprod46.2.309]
27. Lyon MF, Glenister PH. Reduced reproductive performance in androgen-resistant Tfm/Tfm female mice. Proc R Soc Lond B Biol Sci 1980; 208:1-12. [DOI:10.1098/rspb.1980.0040]
28. Auger AP, Tetel MJ, McCarthy MM. Steroid receptor coactivator-1 (SRC-1) mediates the development of sex-specific brain morphology and behavior. Proc Natl Acad Sci U.S.A. 2000; 97: 7551-7555. [DOI:10.1073/pnas.97.13.7551]
29. Shoukir Y, Chardonnens D, Campana A, Sakkas D. Blastocyst development from supernumerary embryos after intracytoplasmic sperm injection: a paternal influence? Hum Reprod 1998; 13: 1632-1637. [DOI:10.1093/humrep/13.6.1632]
30. Gu N, Hu H, Guo Q, Jin S, Wang C, Oh Y, et al. Effects of oral administration of titanium dioxide fine-sized particles on plasma glucose in mice. Food Chem Toxicol 2015; 86: 124-131. [DOI:10.1016/j.fct.2015.10.003]
31. Hu H, Guo Q, Wang C, Ma X, He H, Oh Y, et al. Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species‐induced insulin resistance in mice. J Appl Toxicol 2015; 35: 1122-1132. [DOI:10.1002/jat.3150]
32. Niska K, Pyszka K, Tukaj C, Wozniak M, Radomski MW, Inkielewicz-Stepniak I. Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells. Int J Nanomedicine 2015; 10: 1095-1107.
33. Nelin TD, Joseph AM, Gorr MW, Wold LE. Direct and indirect effects of particulate matter on the cardiovascular system. Toxicol Lett 2012; 208: 293-299. [DOI:10.1016/j.toxlet.2011.11.008]
34. Chen Z, Wang Y, Zhuo L, Chen S, Zhao L, Luan X, et al. Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration. Toxicol Lett 2015; 239: 123-130. [DOI:10.1016/j.toxlet.2015.09.013]

Add your comments about this article : Your username or Email:
CAPTCHA code

Send email to the article author


© 2019 All Rights Reserved | International Journal of Reproductive BioMedicine

Designed & Developed by : Yektaweb