Volume 16, Issue 6 (Jun 2018)                   IJRM 2018, 16(6): 387-396 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aliabadi E, Mesbah F, Kargar-Abarghouei E, Zahiri S, Abdi S. Effects of pentoxifylline on the histological and ultra-structural features of vitrified mouse ovarian tissue: An experimental study. IJRM. 2018; 16 (6) :387-396
URL: http://journals.ssu.ac.ir/ijrmnew/article-1-1134-en.html
1- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
2- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran , mesbahf@sums.ac.ir
3- Department of Anatomical Sciences and Biology, School of Medicine, Azad University of Medical Sciences, Tehran, Iran.
Abstract:   (282 Views)
Background: Vitrification is a process that can be used to preserve gonads in the healthy and natural status. Oxidative stress is one of the disadvantages of vitrification. Pentoxifylline (PTX) is an antioxidant that can reduce reactive oxidative stress effects.
Objective: We aimed to investigate the effects of PTX on histological and ultra-structural features of vitrified and non-vitrified mouse ovarian tissue. Materials and Methods: Twenty-five adult female Balb-C mice were randomly and equally divided into control group: the ovaries did not receive any treatment; experimental 1 and 2: the vitrified ovaries were incubated in phosphate buffer solution and bovine serum albumin without and with PTX, respectively, for 30 min; sham 1 and 2: the non-vitrified ovaries were incubated in phosphate buffer solution and bovine serum albumin and were incubated without and with PTX, respectively for 30 min. The right and left ovaries in all of the groups were evaluated using light and transmission electron microscopy, respectively.
Results: The histological and ultra-structural features of vitrified ovaries were seriously damaged. There was non-uniformed germinal epithelium and tunica albuginea, degenerated granulosa cells and stromal cells, puffy basement membrane and irregular thickness of zona pellucida, as well as a pyknotic nucleus and bubbly and segmented ooplasmic in the follicles. Also, ovarian tissues were damaged by the PTX in the non-vitrified ovaries.
Conclusion: Vitrification can damage the histological and ultra-structural features of the ovary in mouse models. PTX as an antioxidant, with concentration of 1.8 mM could not prevent and restore these damages and had no adequate effects on the vitrified ovarian tissues.
Full-Text [PDF 1029 kb]   (93 Downloads) |   |   Full-Text (HTML)  (9 Views)  
Type of Study: Original Article |
Received: 2018/07/23 | Accepted: 2018/07/23 | Published: 2018/07/23

1. Sanfilippo S, Canis M, Smitz J, Sion B, Darcha C, Janny L, et al. Vitrification of human ovarian tissue: a practical and relevant alternative to slow freezing. Reprod Biol Endocrinol 2015; 13: 67-74. [DOI:10.1186/s12958-015-0065-5]
2. Campos ALM, Guedes Jde S, Rodrigues JK, Pace WA, Fontoura RR, Caetano JP, et al. Comparison between slow freezing and vitrification in terms of ovarian tissue viability in a bovine model. Rev Bras Ginecol Obstet 2016; 38: 333-339. [DOI:10.1055/s-0036-1586258]
3. Best BP. Cryoprotectant toxicity: facts, issues, and questions. Rejuvenation Res 2015; 18: 422-436. [DOI:10.1089/rej.2014.1656]
4. Pegg DE. The relevance of ice crystal formation for the cryopreservation of tissues and organs. Cryobiology 2010; 60 (Suppl.): 36-44. [DOI:10.1016/j.cryobiol.2010.02.003]
5. Youm HW, Lee JR, Lee J, Jee BC, Suh CS, Kim SH. Optimal vitrification protocol for mouse ovarian tissue cryopreservation: effect of cryoprotective agents and in vitro culture on vitrified–warmed ovarian tissue survival. Hum Reprod 2014; 29: 720-730. [DOI:10.1093/humrep/det449]
6. Fahy GM, Wowk B, Wu J, Phan J, Rasch C, Chang A, et al. Cryopreservation of organs by vitrification: perspectives and recent advances. Cryobiology 2004; 48: 157-178. [DOI:10.1016/j.cryobiol.2004.02.002]
7. Aliabadi E, Karimi F, Talaei-Khozani T. Effects of L-Carnitine and pentoxifylline on carbohydrate distribution of mouse testicular sperm membrane. Iran J Med Sci 2013; 38: 107-115.
8. Suzuki N, Mittler R. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 2006; 126: 45-51. [DOI:10.1111/j.0031-9317.2005.00582.x]
9. Kagawa N, Silber S, Kuwayama M. Successful vitrificaiton of bovine and human ovarian tissue. Reprod Biomed Online 2009; 18: 568-577. [DOI:10.1016/S1472-6483(10)60136-8]
10. Fadini R, Brambillasca F, Renzini MM, Merola M, Comi R, De Ponti E, et al. Human oocyte cryopreservation: comparison between slow and ultrarapid methods. Reprod Biomed Online 2009; 19: 171-180. [DOI:10.1016/S1472-6483(10)60069-7]
11. Ranjbar A, Ghahremani MH, Sharifzadeh M, Golestani A, Ghazi-Khansari M, Baeeri M, et al. Protection by pentoxifylline of malathion-induced toxic stress and mitochondrial damage in rat brain. Hum Exp Toxicol 2010; 29: 851-864. [DOI:10.1177/0960327110363836]
12. Rezvanfar MA, Sadaat S, Shojaeei Saudi HA, Mansoori P, Saeedi S, Gooshe M, et al. Cellular and Molecular Mechanics of Pentoxyfillin's Beneficial Effects in experimental polycystic ovary. Thereoginology 2015; 83: 968-977. [DOI:10.1016/j.theriogenology.2014.11.034]
13. Khalili MA, Malone M, Palmerini MG, Bianchi S, Machiavelli G, Nottola SA. Ultrastructure of human Aliabadi et al mature oocytes after vitrification. Eur J Histochem 2012; 56: 236-242. [DOI:10.4081/ejh.2012.e38]
14. Kovacic B, Vlaisavljevic V, Reljic M. Clinical use of pentoxifylline for activation of immotile testicular sperm before ICSI in patients with azoospermia. J Androl 2006; 27: 48-52. [DOI:10.2164/jandrol.05079]
15. Mazoochi T, Salehnia M, Rezazadeh MR. Mowla SJ. Morphologic, ultrastructural, and biochemical identification of apoptosis in vitrified-warmed mouse ovarian tissue. Fertil Steril 2008; 90 (Suppl.): 1480-1486. [DOI:10.1016/j.fertnstert.2007.07.1384]
16. Radon CM, Borkar AA, Homburg RR. Female fertility preservation: a fertile future? Obstet Gynaecol 2015; 17: 116-124. [DOI:10.1111/tog.12191]
17. Palmerini MG, Antinori M, Maione M, Cerusico F, Versaci C, Nottola SA, et al. Ultrastructure of immature and mature human oocytes after cryotop vitrification. J Reprod Dev 2014; 60: 411-420. [DOI:10.1262/jrd.2014-027]
18. Mandelbaum J, Anastasiou O, Lévy R, Guérin JF, de Larouzière V, Antoine JM. Effects of cryopreservation on the meiotic spindle of human oocytes. Eur J Obstet Gynecol Reprod Biol 2004; 113 (Suppl.): S17-23. [DOI:10.1016/j.ejogrb.2003.11.005]
19. Mathiasy FJ, D'Souzay F, Uppangala S, Salian SR, Kalthur G, Adiga SK. Ovarian tissue vitrification is more efficient than slow freezing in protecting oocyte and granulosa cell DNA integrity. Syst Biol Reprod Med 2014; 60: 317-322. [DOI:10.3109/19396368.2014.923542]
20. Liu M. The biology and dynamics of mammalian cortical granules. Reprod Biol Endocrinol 2011; 9: 149-155. [DOI:10.1186/1477-7827-9-149]
21. Nottola SA, Macchiarelli G, Coticchio G, Bianchi S, Cecconi S, De Santis L, et al. Ultrastructure of human mature oocytes after slow cooling cryopreservation using different sucrose concentrations. Hum Reprod 2007; 22: 1123-1133. [DOI:10.1093/humrep/del463]
22. Chian RC, Huang JY, Gilbert L, Son WY, Holzer H, Cui SJ, et al. Obstetric outcomes following vitrification of in vitro and in vivo matured oocytes. Fertil Steril 2009; 91: 2391-2398. [DOI:10.1016/j.fertnstert.2008.04.014]
23. Tao T, Del Valle A. Human oocyte and ovarian tissue cryopreservation and its application. J Assist Reprod Genet 2008; 25: 287-296. [DOI:10.1007/s10815-008-9236-z]
24. Nottola SA, Coticchio G, De Santis L, Macchiarelli G, Maione M, Bianchi S, et al. Ultrastructure of human mature oocytes after slow cooling cryopreservation with ethylene glycol. Reprod Biomed Online 2008; 17: 368-377. [DOI:10.1016/S1472-6483(10)60220-9]
25. Wu C, Rui R, Dai J, Zhang C, Ju S, Xie B, et al. Effects of cryopreservation on the developmental competence, ultrastructure and cytoskeletal structure of porcine oocytes. Mol Reprod Dev 2006; 73: 1454-1462. [DOI:10.1002/mrd.20579]
26. Valojerdi MR, Salehnia M. Developmental potential and ultrastructural injuries of metaphase II (MII) mouse oocytes after slow freezing or vitrification. J Assist Reprod Genet 2005; 22: 119-127. [DOI:10.1007/s10815-005-4876-8]
27. Bonetti A, Cervi M, Tomei F, Marchini M, Ortolani F, Manno M. Ultrastructural evaluation of human metaphase II oocytes after vitrification: closed versus open devices. Fertil Steril 2011; 95: 928-935. [DOI:10.1016/j.fertnstert.2010.08.027]
28. Swain JE, Pool TB. ART failure: oocyte contributions to unsuccessful fertilization. Hum Reprod Update 2008; 14: 431-446. [DOI:10.1093/humupd/dmn025]
29. Zadak Z, Hyspler R, Ticha A, Hronek M, Fikrova P, Rathouska J, et al. Antioxidants and vitamins in clinical condions. Physiol Res 2009; 58 (Suppl.): 7-13.
30. Stanic P, Sonicki Z, Suchanek E. Effect of pentoxifylline on motility and membrane integrity of cryopreserved human spermatozoa. Int J Androl 2002; 25: 186-190. [DOI:10.1046/j.1365-2605.2002.00348.x]
31. Aono N, Abe Y, Hara K, Sasada H, Sato E, Yoshida H. Production of live offspring from mouse germinal vesicle–stage oocytes vitrified by a modified stepwise method, SWEID. Fertil Steril 2005; 84 (Suppl.): 1078-1082. [DOI:10.1016/j.fertnstert.2005.03.077]
32. Khorami S, Farokhi F, Tukmechi A, Noerozi R. [Effect of pentoxifylline and vitamin E on ovarian follicles in Rats.] J Shahrekord Univ Med Sci 2013; 15: 64-73. (in Persian)
33. Theron T, Binder A, Verheye-Dua F, Bohm L. The role of G2-block abrogation, DNA double-strand break repair and apoptosis in the radiosensitization of melanoma and squamous cell carcinoma cell lines by pentoxifylline. Int J Radiat Biol 2000; 76: 1197-1208. [DOI:10.1080/09553000050134438]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2019 All Rights Reserved | International Journal of Reproductive BioMedicine

Designed & Developed by : Yektaweb