Volume 16, Issue 4 (4-2018)                   IJRM 2018, 16(4): 275-284 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Taghvaee Javanshir S, Yaghmaei P, Hajebrahimi Z. Thymoquinone ameliorates some endocrine parameters and histological alteration in a rat model of polycystic ovary syndrome. IJRM. 2018; 16 (4) :275-284
URL: http://journals.ssu.ac.ir/ijrmnew/article-1-1066-en.html
1- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran, Iran
2- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran, Iran , yaghmaei_p@srbiau.ac.ir
3- Aerospace Research Institute, Ministry of Science, Research and Technology, Tehran, Iran, Iran
Abstract:   (119 Views)
Background: Polycystic ovary syndrome (PCOS) is a common form of the endocrine disease which is associated with metabolic dysfunction. PCOS and type 2 diabetes mellitus are related in multiple aspects and are similar in many pathological features. Anti-diabetic effects of Nigella sativa and protective effects of it on reproductive system have been suggested in some reports.
Objective: The aim of current study was to evaluate the effects of thymoquinone, the main components of Nigella sativa, on PCOS model of rats.
Materials and Methods: Intraperitoneal injection of estradiol valerate for 25 days was used to induce PCOS in Wistar rats, followed by intraperitoneal administration of 8 and 16 mg/kg thymoquinone for 30 days. Rats were divided into 5 groups; control, sham or PCOS, experiment-1 (PCOS and 8 mg/kg thymoquinone), experiment-2 (PCOS and 16 mg/kg thymoquinone), and metformin (PCOS and metformin administration, 100 mg/kg) groups. All of the animals were subjected to serum biochemical analysis of blood and histopathological study of ovaries.
Results: Estradiol valerate induced PCOS while administration of thymoquinone recovered it. The body weight, ovarian morphology, and ovulation had been improved and the serum biochemical parameters including glucose, triglyceride, total cholesterol, low-density lipoprotein, high-density lipoprotein, luteinizing hormone, and follicle stimulating hormone were reversed after thymoquinone intervention.
Conclusion: Our data suggest that thymoquinone has improvement effects on an ovarian function and ovulation in the PCOS rat model. Therefore, thymoquinone and Nagilla sativa could be used as a protective agent and as an adjunct treatment in PCOS patients.
Full-Text [PDF 713 kb]   (69 Downloads) |   |   Full-Text (HTML)  (23 Views)  
Type of Study: Original Article | Subject: Reproductive biology
Received: 2018/05/27 | Accepted: 2018/05/27 | Published: 2018/05/27

References
1. Allahbadia GN, Merchant R. Polycystic ovary syndrome and impact on health. Middle East Fertil Soc J 2011; 16: 19-37. [DOI:10.1016/j.mefs.2010.10.002]
2. Tsilchorozidou T, Overton C, Conway GS. The pathophysiology of polycystic ovary syndrome. Clin Endocrinol 2004; 60: 1-17. [DOI:10.1046/j.1365-2265.2003.01842.x]
3. Patel K, Coffler MS, Dahan MH, Malcom PJ, Deutsch A, Chang RJ. Relationship of GnRH-stimulated LH release to episodic LH secretion and baseline endocrine-metabolic measures in women with polycystic ovary syndrome. Clin Endocrinol 2004; 60: 67-74. [DOI:10.1111/j.1365-2265.2004.01945.x]
4. Pasquali R, Zanotti L, Fanelli F, Mezzullo M, Fazzini A, Morselli Labate AM, et al. Defining hyperandrogenism in women with polycystic ovary syndrome: a challenging perspective. J Clin Endocrinol Metab 2016; 101: 2013-2022. [DOI:10.1210/jc.2015-4009]
5. Trivax B, Azziz R. Diagnosis of polycystic ovary syndrome. Clin Obstet Gynecol 2007; 50: 168-177. [DOI:10.1097/GRF.0b013e31802f351b]
6. Goodman NF, Cobin RH, Futterweit W, Glueck JS, Legro RS, Carmina E, et al. American association of clinical endocrinologists, american college of endocrinology, and androgen excess and PCOS society disease state clinical review: guide to the best practices in the evaluation and treatment of polycystic ovary syndrome-part 1. Endocr Pract 2015; 21: 1291-1300. [DOI:10.4158/EP15748.DSC]
7. Shokeir T, El-Kannishy G. Rosiglitazone as treatment for clomiphene citrate-resistant polycystic ovary syndrome: factors associated with clinical response. J Womens Health 2008; 17: 1445-1452. [DOI:10.1089/jwh.2008.0812]
8. Maruthur NM, Tseng E, Hutfless S, Wilson LM, Suarez-Cuervo C, Berger Z, et al. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 2016; 164: 740-751. [DOI:10.7326/M15-2650]
9. Brettenthaler N, De Geyter C, Huber PR, Keller U. Effect of the insulin sensitizer pioglitazone on insulin resistance, hyperandrogenism, and ovulatory dysfunction in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2004; 89: 3835-3840. [DOI:10.1210/jc.2003-031737]
10. Hasani-Ranjbar S, Larijani B. Medicinal plants as potential new target drugs in endocrine disorders-review article. Iran J Public Health 2014; 43: 24-34.
11. Ali BH, Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytother Res 2003; 17: 299-305. [DOI:10.1002/ptr.1309]
12. Burits M, Bucar F. Antioxidant activity of Nigella sativa essential oil. Phytother Res 2000; 14: 323-328. https://doi.org/10.1002/1099-1573(200008)14:5<323::AID-PTR621>3.0.CO;2-Q [DOI:10.1002/1099-1573(200008)14:53.0.CO;2-Q]
13. Kanter M, Coskun O, Kalayci M, Buyukbas S, Cagavi F. Neuroprotective effects of Nigella sativa on experimental spinal cord injury in rats. Hum Exp Toxicol 2006; 25: 127-133. [DOI:10.1191/0960327106ht608oa]
14. Ait Mbarek L, Ait Mouse H, Elabbadi N, Bensalah M, Gamouh A, Aboufatima R, et al. Anti-tumor properties of blackseed, (Nigella sativa L.) extracts. Braz J Med Biol Res 2007; 40: 839-847. [DOI:10.1590/S0100-879X2006005000108]
15. AL-Hader A, Agel M, Hasan Z. Hypoglycemic effects of the volatile oil of Nigella sativa seeds. Int J Pharmacog 1993; 31: 96-100. [DOI:10.3109/13880209309082925]
16. El-dian EG, Helal E, Mostafa AM. Effect of Nigella sativa extract on some physiological parameters and histological changes in alloxan-induced diabetic albino rats. Egypt J Exp Biol (Zool) 2006; 2: 233-240.
17. Parandin R, Yousofvand N, Ghorbani R. The enhancing effects of alcoholic extract of Nigella sativa seed on fertility potential, plasma gonadotropins and testosterone in male rats. Iran J Reprod Med 2012; 10: 355-362.
18. Kamarzaman S, Shaban M, Abdul Rahman S. The prophylactic effect of Nigella Sativa against cyclophosphamide in the ovarian follicles of matured adult mice: A preliminary study. J Anim Plant Sci 2014; 24: 81-88.
19. Loeffler HH, McDougald CH. Estimation of cholesterol in serum by means of improved technics. Am J Clin Pathol 1963; 39: 311-315. [DOI:10.1093/ajcp/39.3_ts.311]
20. Burstein M, Scholnick HR, Morfin R. Rapid method for the isolation of lipoprotein from human serum by precipitation with polyanions. J Lipid Res 1970; 11: 583-595.
21. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18: 499-502.
22. Gottfried SP, Rosenberg B. Improved manual spectrophotometric procedure for determination of serum triacylglycerols. Clin Chem 1973; 19: 1077-1078.
23. Suvarna KS, Layton Ch, Bancroft JD. Bancroft's Theory and Practice of Histological Techniques. Sixth ed. New York, London, San Francisco Tokyo: Churchill Livingstone; 2008.
24. Williams CJ, Erickson GF. Morphology and physiology of the ovary. Endotext 2003: 51-58.
25. Committee for the update of the guide for the care and use of laboratory animals. Guide for the care and use of laboratory animals. Washington, DC; USA: National Academy Press; 1996.
26. Corbett SJ, McMichael AJ, Prentice AM. Type 2 diabetes, cardiovascular disease, and the evolutionary paradox of the polycystic ovary syndrome: a fertility first hypothesis. Am J Hum Biol 2009; 21: 587-598. [DOI:10.1002/ajhb.20937]
27. Simard M, Brawer JR, Farookhi R. An intractable, ovary-independent impairment in hypothalamo-pituitary function in the estradiol-valerate-induced polycystic ovarian condition in the rat. Biol Reprod 1987; 36: 1229-1237. [DOI:10.1095/biolreprod36.5.1229]
28. Stener-Victorin E, Ploj K, Larsson BM, Holmang A. Rats with steroid-induced polycystic ovaries develop hypertension and increased sympathetic nervous system activity. Reprod Biol Endocrinol 2005; 3: 44-54. [DOI:10.1186/1477-7827-3-44]
29. Shi D, Vine DF. Animal models of polycystic ovary syndrome: a focused review of rodent models in relationship to clinical phenotypes and cardiometabolic risk. Fertil Steril 2012; 98: 185-193. [DOI:10.1016/j.fertnstert.2012.04.006]
30. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 2006; 34: D668-D672. [DOI:10.1093/nar/gkj067]
31. Brettenthaler N, De Geyter C, Huber PR, Keller U. Effect of the insulin sensitizer pioglitazone on insulin resistance, hyperandrogenism, and ovulatory dysfunction in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2004; 89: 3835-3840. [DOI:10.1210/jc.2003-031737]
32. Marchetti P, Del Guerra S, Marselli L, Lupi R, Masini M, Pollera M, et al. Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. J Clin Endocrinol Metab 2004; 89: 5535-5541. [DOI:10.1210/jc.2004-0150]
33. Arslanian SA, Lewy V, Danadian K, Saad R. Metformin therapy in obese adolescents with polycystic ovary syndrome and impaired glucose tolerance: amelioration of exaggerated adrenal response to adrenocorticotropin with reduction of insulinemia/insulin resistance. J Clin Endocrinol Metab 2002; 87: 1555-1559. [DOI:10.1210/jcem.87.4.8398]
34. Lee MS, Kang SK, Lee BC, Hwang WS. The beneficial effects of insulin and metformin on in vitro developmental potential of porcine oocytes and embryos. Biol Reprod 2005; 73: 1264-1268. [DOI:10.1095/biolreprod.105.041186]
35. Kaatabi H, Bamosa AO, Badar A, Al-Elq A, Abou-Hozaifa B, Lebda F, et al. Nigella sativa iImproves glycemic control and ameliorates oxidative stress in patients with type 2 diabetes mellitus: placebo controlled participant blinded clinical trial. PLoS One 2015; 10: e0113486. [DOI:10.1371/journal.pone.0113486]
36. Samarji R, Balbaa M. Anti-diabetic activity of different oils through their effect on arylsulfatases. J Diabetes Metab Disord 2014; 13: 116-123. [DOI:10.1186/s40200-014-0116-z]
37. Kaatabi H, Bamosa AO, Lebda FM, Al Elq AH, Al-Sultan AI. Favorable impact of Nigella sativa seeds on lipid profile in type 2 diabetic patients. J Fam Commun Med 2012; 19: 155-161. [DOI:10.4103/2230-8229.102311]
38. Mukhallad AM, Mohamad MJ, Mohamad, Hatham D. Effects of black seeds (Nigella sativa) on spermatogenesis and fertility of male albino rats. Res J Med Med Sci 2009; 4: 386-390.
39. Al-Sa'aidi JAA, Al-Khuzai ALD, Al-Zobaydi NFH. Effect of alcoholic extract of Nigella sativa on fertility in male rats. Iraq J Vet Sci 2009; 23: 123-128.

Add your comments about this article : Your username or Email:
CAPTCHA code

Send email to the article author


© 2018 All Rights Reserved | International Journal of Reproductive BioMedicine

Designed & Developed by : Yektaweb