Volume 16, Issue 4 (4-2018)                   IJRM 2018, 16(4): 261-266 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moridi H, Hosseini S A, Shateri H, Kheiripour N, Kaki A, Hatami M et al . Protective effect of cerium oxide nanoparticle on sperm quality and oxidative damage in malathion-induced testicular toxicity in rats: An experimental study. IJRM. 2018; 16 (4) :261-266
URL: http://journals.ssu.ac.ir/ijrmnew/article-1-1064-en.html
1- Department of Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
2- Molecular Medicine Center, Hamadan University of Medical Sciences, Hamadan, Iran.
3- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
4- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
5- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran , akranjbar2015@gmail.com
Abstract:   (208 Views)
Background: Malathion is an organophosphorus pesticide that commonly used in many agricultural and non-agricultural processes. Previous studies have reported the effects of melatonin on the reproductive system. Cerium dioxide nanoparticles (CeNPs) due to their antioxidative properties are promising to impact on the development of male infertility.
Objective: The aim of this study was to evaluate the effect of CeNPs on oxidative stress and sperm parameters after malathion exposure of male rats.
Materials and Methods: 36 adult male Wistar rats were divided into 6 groups (n=6/each): Control, CeNPs -treated control (15 and 30 mg/kg/day), malathion (100 mg/ kg/day), and CeNPs -treated malathion groups (15 and 30 mg/ kg/day). At the end of the study (4 wk), the sperm counts, motility, and viability in the testis of rats were measured, also lipid peroxidation, total antioxidant capacity, and total thiol groups in homogenate testis were investigated.
Results: Malathion significantly reduced sperm count, viability, and motility than the control rats (p<0.001). Co-treatment of malathion with CeNPs 30 mg/kg had a protective effect on sperm counts (p=0.03), motility (p=0.01), and viability (p<0.001) compare to malathion group. Also, the results showed that malathion reduced testis total anti-oxidant capacity, the total thiol group, and increased testis malondialdehyde than the control rats (p<0.001). CeNPs 30 mg/kg are increased total antioxidant capacity (p<0.001) and total thiol group (p=0.03) compared to malathion group. CeNPs at both doses (15 and 30 mg/kg) improved malondialdehyde than the malathion group (p<0.001 and p=0.01 respectively).
Conclusion: CeNPs 30 mg/kg administered considerably restored testicular changes induced by malathion. The improvement of oxidative stress by CeNPs may be associated with increased sperm counts, motility and viability in the testis.
Full-Text [PDF 465 kb]   (67 Downloads) |   |   Full-Text (HTML)  (13 Views)  
Type of Study: Original Article | Subject: Reproductive biology
Received: 2018/05/27 | Accepted: 2018/05/27 | Published: 2018/05/27

References
1. Mehri N, Felehgari H, Harchegani AL, Behrooj H, Kheiripour N, Ghasemi H, et al. Hepatoprotective effect of the root extract of green tea against malathion-induced oxidative stress in rats. J Herbmed Pharmacol 2016; 5: 116-119.
2. Uzun FG, Kalender S, Durak D, Demir F, Kalender Y. Malathion-induced testicular toxicity in male rats and the protective effect of vitamins C and E. Food Chem Toxicol 2009; 47: 1903-1908. [DOI:10.1016/j.fct.2009.05.001]
3. Bustos-Obregon E, Gonzalez-Hormazabal P. Effect of a single dose of malathion on spermatogenesis in Mice. Asian J Androl 2003; 5: 105-107.
4. Nahid Z, Tavakol HS, Abolfazl GK, Leila M, Negar M, Hamed F, et al. Protective role of green tea on malathion-induced testicular oxidative damage in rats. Asian Pac J Reprod 2016; 5: 42-45. [DOI:10.1016/j.apjr.2015.12.007]
5. Flehi-Slim I, Boughattas S, Belaïd-Nouira Y, Sakly A, Neffati F, Najjar M, et al. Toxicological Effects of 30-Day Intake of Malathion on the Male Reproductive System of Wistar Rats. J Food Qual Hazards Control 2016; 3: 152-156.
6. Walczak-Jedrzejowska R, Wolski JK, Slowikowska-Hilczer J. The role of oxidative stress and antioxidants in male fertility. Cent Eur J Urol 2013; 66: 60-67. [DOI:10.5173/ceju.2013.01.art19]
7. Adewoyin M, Ibrahim M, Roszaman R, Isa MLM, Alewi NAM, Rafa AAA, et al. Male Infertility: The Effect of Natural Antioxidants and Phytocompounds on Seminal Oxidative Stress. Diseases 2017; 5: 1-26. [DOI:10.3390/diseases5010009]
8. Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnology 2004; 2: 1-6. [DOI:10.1186/1477-3155-2-3]
9. Das S, Dowding JM, Klump KE, McGinnis JF, Self W, Seal S. Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine 2013; 8: 1483-1508. [DOI:10.2217/nnm.13.133]
10. Xu C, Qu X. Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Materials 2014; 6: 1-16. [DOI:10.1038/am.2013.88]
11. Dowding JM, Seal S, Self WT. Cerium oxide nanoparticles accelerate the decay of peroxynitrite (ONOO(−)). Drug Deliv Transl Res 2013; 3: 375-379. [DOI:10.1007/s13346-013-0136-0]
12. Dirican EK, Kalender Y. Dichlorvos-induced testicular toxicity in male rats and the protective role of vitamins C and E. Exp Toxicol Pathol 2012; 64: 821-830. [DOI:10.1016/j.etp.2011.03.002]
13. Slimen S, Saloua el F, Najoua G. Oxidative stress and cytotoxic potential of anticholinesterase insecticide, malathion in reproductive toxicology of male adolescent mice after acute exposure. Iran J Basic Med Sci 2014; 17: 522-530.
14. Moore K, Roberts LJ, 2nd. Measurement of lipid peroxidation. Free Radic Res 1998; 28: 659-671. [DOI:10.3109/10715769809065821]
15. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 1996; 239: 70-76. [DOI:10.1006/abio.1996.0292]
16. Hu M-L. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol 1994; 233: 380-385. [DOI:10.1016/S0076-6879(94)33044-1]
17. Ranjbar A, Firozian F, Soleimani Asl S, Ghasemi H, Taheri Azandariani M, Larki A, et al. Nitrosative DNA damage after sub-chronic exposure to silver nanoparticle induces stress nephrotoxicity in rat kidney. Toxin Rev 2017; 3: 1-7. [DOI:10.1080/15569543.2017.1386685]
18. Uzunhisarcikli M, Kalender Y, Dirican K, Kalender S, Ogutcu A, Buyukkomurcu F. Acute, subacute and subchronic administration of methyl parathion-induced testicular damage in male rats and protective role of vitamins C and E. Pest Biochem Physiol 2007; 87: 115-122. [DOI:10.1016/j.pestbp.2006.06.010]
19. Contreras HR, Bustos‐Obregón E. Morphological alterations in mouse testis by a single dose of malathion. J Exp Zool 1999; 284: 355-359. https://doi.org/10.1002/(SICI)1097-010X(19990801)284:3<355::AID-JEZ13>3.0.CO;2-N [DOI:10.1002/(SICI)1097-010X(19990801)284:33.0.CO;2-N]
20. Latchoumycandane C, Chitra KC, Mathur PP. The effect of methoxychlor on the epididymal antioxidant system of adult rats. Reprod Toxicol 2002; 16: 161-172. [DOI:10.1016/S0890-6238(02)00002-3]
21. Rahimi R, Karimi J, Khodadadi I, Tayebinia H, Kheiripour N, Hashemnia M, et al. Silymarin ameliorates expression of urotensin II (U-II) and its receptor (UTR) and attenuates toxic oxidative stress in the heart of rats with type 2 diabetes. Biomed Pharmacother 2018; 101: 244-250. [DOI:10.1016/j.biopha.2018.02.075]
22. Agarwal A, Virk G, Ong C, du Plessis SS. Effect of Oxidative Stress on Male Reproduction. World J Mens Health 2014; 32: 1-17. [DOI:10.5534/wjmh.2014.32.1.1]
23. Hazarika A, Sarkar SN, Hajare S, Kataria M, Malik JK. Influence of malathion pretreatment on the toxicity of anilofos in male rats: a biochemical interaction study. Toxicology 2003; 185: 1-8. [DOI:10.1016/S0300-483X(02)00574-7]
24. Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM. Anti‐inflammatory Properties of Cerium Oxide Nanoparticles. Small 2009; 5: 2848-2856. [DOI:10.1002/smll.200901048]
25. Naganuma T, Traversa E. Stability of the Ce 3+ valence state in cerium oxide nanoparticle layers. Nanoscale 2012; 4: 4950-4953. [DOI:10.1039/c2nr30406f]
26. Karakoti AS, Singh S, Kumar A, Malinska M, Kuchibhatla SV, Wozniak K, et al. PEGylated nanoceria as radical scavenger with tunable redox chemistry. J Am Chem Soc 2009; 131: 14144-14145. [DOI:10.1021/ja9051087]
27. Zhai JH, Wu Y, Wang XY, Cao Y, Xu K, Xu L, et al. Antioxidation of cerium oxide nanoparticles to several series of oxidative damage related to type II diabetes mellitus in vitro. Med Sci Monit 2016; 22: 3792-3797. [DOI:10.12659/MSM.901068]
28. Navaei-Nigjeh M, Rahimifard M, Pourkhalili N, Nili-Ahmadabadi A, Pakzad M, Baeeri M, et al. Multi-organ protective effects of cerium oxide nanoparticle/selenium in diabetic rats: evidence for more efficiency of nanocerium in comparison to metal form of cerium. Asian J Anim Vet Adv 2012; 7: 605-612. [DOI:10.3923/ajava.2012.605.612]
29. Najafi R, Hosseini A, Ghaznavi H, Mehrzadi S, Sharifi AM. Neuroprotective effect of cerium oxide nanoparticles in a rat model of experimental diabetic neuropathy. Brain Res Bull 2017; 131: 117-122. [DOI:10.1016/j.brainresbull.2017.03.013]
30. Eom HJ, Choi J. Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol Lett 2009; 187: 77-83. [DOI:10.1016/j.toxlet.2009.01.028]
31. Nemmar A, Holme JA, Rosas I, Schwarze PE, Alfaro-Moreno E. Recent advances in particulate matter and nanoparticle toxicology: a review of the in vivo and in vitro studies. BioMed Res Int 2013; 2013: 279371. [DOI:10.1155/2013/279371]
32. Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113: 823-839. [DOI:10.1289/ehp.7339]
33. Gagnon J, Fromm KM. Toxicity and protective effects of cerium oxide nanoparticles (nanoceria) depending on their preparation method, particle size, cell type, and exposure route. Eur J Inorg Chem 2015; 2015: 4510-4517. [DOI:10.1002/ejic.201500643]

Add your comments about this article : Your username or Email:
Write the security code in the box

Send email to the article author


© 2018 All Rights Reserved | International Journal of Reproductive Biomedicine

Designed & Developed by : Yektaweb